Spaces:
Runtime error
Runtime error
Upload folder using huggingface_hub
Browse files
deploy.py
CHANGED
|
@@ -1,43 +1,687 @@
|
|
| 1 |
|
| 2 |
-
#file
|
| 3 |
|
| 4 |
-
|
| 5 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
global cl
|
| 12 |
global explore_reels_list
|
| 13 |
global sentiment_analyzer_instance
|
| 14 |
global content_classifier_pipeline
|
| 15 |
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
"
|
| 34 |
-
|
| 35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
)
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
|
| 42 |
|
| 43 |
def analyze_reels_gradio(max_to_analyze):
|
|
@@ -58,11 +702,28 @@ def analyze_reels_gradio(max_to_analyze):
|
|
| 58 |
return "Error: No reels available to analyze.", None, None
|
| 59 |
|
| 60 |
|
| 61 |
-
#
|
| 62 |
if sentiment_analyzer_instance is None:
|
| 63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
if content_classifier_pipeline is None:
|
| 65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
|
| 67 |
|
| 68 |
analysis_status_messages = []
|
|
@@ -115,28 +776,34 @@ def analyze_reels_gradio(max_to_analyze):
|
|
| 115 |
return final_status_message, sentiment_plot_figure, content_plot_figure
|
| 116 |
|
| 117 |
|
| 118 |
-
# Re-define plot functions to return bytes (if not already done in a previous cell)
|
| 119 |
-
# Assuming they were defined in the previous subtask's code block.
|
| 120 |
-
# If not, they would need to be included here.
|
| 121 |
-
|
| 122 |
# --- Gradio Blocks Interface ---
|
| 123 |
with gr.Blocks() as demo:
|
| 124 |
gr.Markdown("# Instagram Reels Analysis")
|
|
|
|
|
|
|
| 125 |
with gr.Row():
|
| 126 |
-
|
| 127 |
-
login_button = gr.Button("Login")
|
| 128 |
login_status_output = gr.Label(label="Login Status")
|
| 129 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 130 |
with gr.Row():
|
| 131 |
fetch_button = gr.Button("Fetch Reels")
|
| 132 |
fetch_status_output = gr.Label(label="Fetch Status")
|
| 133 |
|
|
|
|
| 134 |
with gr.Row():
|
| 135 |
max_reels_input = gr.Slider(minimum=1, maximum=100, value=10, step=1, label="Number of Reels to Analyze")
|
| 136 |
analyze_button = gr.Button("Analyze Reels")
|
| 137 |
|
| 138 |
analyze_status_output = gr.Label(label="Analysis Status")
|
| 139 |
|
|
|
|
| 140 |
with gr.Row():
|
| 141 |
# Sentiment Analysis Outputs
|
| 142 |
with gr.Column():
|
|
@@ -149,74 +816,50 @@ with gr.Blocks() as demo:
|
|
| 149 |
content_plot_output = gr.Plot(label="Content Distribution")
|
| 150 |
|
| 151 |
|
| 152 |
-
# Link
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
"""Gradio-compatible login function for Blocks."""
|
| 159 |
-
global cl
|
| 160 |
-
try:
|
| 161 |
-
PASSWORD = userdata.get('password')
|
| 162 |
-
except Exception as e:
|
| 163 |
-
return f"Error accessing password secret: {e}"
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
if not PASSWORD:
|
| 167 |
-
return "Error: Instagram password not found in Colab secrets."
|
| 168 |
-
|
| 169 |
-
cl = Client()
|
| 170 |
-
|
| 171 |
-
try:
|
| 172 |
-
cl.login(username, PASSWORD)
|
| 173 |
-
return f"Successfully logged in as {username}"
|
| 174 |
-
except Exception as e:
|
| 175 |
-
cl = None # Ensure cl is None on failure
|
| 176 |
-
return f"Error during login: {e}"
|
| 177 |
-
|
| 178 |
-
def fetch_reels_gradio_blocks():
|
| 179 |
-
"""Gradio-compatible function to fetch explore reels for Blocks."""
|
| 180 |
-
global cl
|
| 181 |
-
global explore_reels_list
|
| 182 |
-
|
| 183 |
-
if cl is None:
|
| 184 |
-
explore_reels_list = [] # Ensure list is empty on failure
|
| 185 |
-
return "Error: Not logged in. Please log in first."
|
| 186 |
-
|
| 187 |
-
try:
|
| 188 |
-
# Fetch a limited number of reels for demonstration purposes
|
| 189 |
-
# You might want to make this number configurable later
|
| 190 |
-
fetched_reels = cl.explore_reels()[:100] # Fetch up to 100 for analysis
|
| 191 |
-
explore_reels_list = fetched_reels
|
| 192 |
-
if explore_reels_list:
|
| 193 |
-
return f"Successfully fetched {len(explore_reels_list)} explore reels."
|
| 194 |
-
else:
|
| 195 |
-
explore_reels_list = [] # Ensure it's an empty list
|
| 196 |
-
return "Fetched 0 explore reels."
|
| 197 |
-
except Exception as e:
|
| 198 |
-
explore_reels_list = [] # Ensure it's an empty list on error
|
| 199 |
-
return f"Error fetching explore reels: {e}"
|
| 200 |
-
|
| 201 |
|
| 202 |
-
|
| 203 |
-
fn=
|
| 204 |
-
inputs=
|
| 205 |
-
outputs=login_status_output
|
| 206 |
)
|
| 207 |
|
| 208 |
fetch_button.click(
|
| 209 |
-
fn=
|
| 210 |
inputs=None, # No direct inputs needed for fetching
|
| 211 |
outputs=fetch_status_output
|
| 212 |
)
|
| 213 |
|
| 214 |
-
# Link the Analyze button to the analysis function
|
| 215 |
analyze_button.click(
|
| 216 |
fn=analyze_reels_gradio,
|
| 217 |
inputs=max_reels_input, # Input is the slider value
|
| 218 |
outputs=[analyze_status_output, sentiment_plot_output, content_plot_output] # Outputs are status and the two plots
|
| 219 |
)
|
| 220 |
|
| 221 |
-
#
|
| 222 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
|
| 2 |
+
# This deploy.py file contains the complete code for the Instagram Reels Analysis Gradio App.
|
| 3 |
|
| 4 |
+
# --- Imports ---
|
| 5 |
import gradio as gr
|
| 6 |
+
import time
|
| 7 |
+
import random
|
| 8 |
+
import matplotlib.pyplot as plt
|
| 9 |
+
import pandas as pd
|
| 10 |
+
import torch
|
| 11 |
+
import emoji
|
| 12 |
+
import re
|
| 13 |
+
import numpy as np
|
| 14 |
+
import io # Import io for handling image bytes
|
| 15 |
|
| 16 |
+
from google.colab import userdata
|
| 17 |
+
from instagrapi import Client
|
| 18 |
+
from transformers import (
|
| 19 |
+
pipeline,
|
| 20 |
+
AutoTokenizer,
|
| 21 |
+
AutoModelForSequenceClassification,
|
| 22 |
+
Trainer,
|
| 23 |
+
TrainingArguments,
|
| 24 |
+
RobertaForSequenceClassification,
|
| 25 |
+
AlbertForSequenceClassification
|
| 26 |
+
)
|
| 27 |
+
from datasets import Dataset, Features, Value
|
| 28 |
+
from collections import Counter
|
| 29 |
+
from sklearn.metrics import accuracy_score, f1_score
|
| 30 |
+
|
| 31 |
+
# --- Configuration ---
|
| 32 |
+
CONFIG = {
|
| 33 |
+
"max_length": 128,
|
| 34 |
+
"batch_size": 16,
|
| 35 |
+
"learning_rate": 2e-5,
|
| 36 |
+
"num_train_epochs": 3,
|
| 37 |
+
"few_shot_examples": 5, # per class
|
| 38 |
+
"confidence_threshold": 0.7,
|
| 39 |
+
"neutral_reanalysis_threshold": 0.33
|
| 40 |
+
}
|
| 41 |
+
|
| 42 |
+
# --- Global Variables for State Management ---
|
| 43 |
global cl
|
| 44 |
global explore_reels_list
|
| 45 |
global sentiment_analyzer_instance
|
| 46 |
global content_classifier_pipeline
|
| 47 |
|
| 48 |
+
cl = None
|
| 49 |
+
explore_reels_list = []
|
| 50 |
+
sentiment_analyzer_instance = None
|
| 51 |
+
content_classifier_pipeline = None
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
# --- Sentiment Analysis Class ---
|
| 55 |
+
class ReelSentimentAnalyzer:
|
| 56 |
+
def __init__(self):
|
| 57 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 58 |
+
self._initialize_models()
|
| 59 |
+
|
| 60 |
+
def _initialize_models(self):
|
| 61 |
+
"""Initialize and configure all models"""
|
| 62 |
+
print("\nInitializing Sentiment Analysis Models...")
|
| 63 |
+
# English models
|
| 64 |
+
print("Loading English Emotion Model...")
|
| 65 |
+
self.emotion_tokenizer = AutoTokenizer.from_pretrained("finiteautomata/bertweet-base-emotion-analysis")
|
| 66 |
+
self.emotion_model = AutoModelForSequenceClassification.from_pretrained(
|
| 67 |
+
"finiteautomata/bertweet-base-emotion-analysis"
|
| 68 |
+
).to(self.device)
|
| 69 |
+
print("Loading English Sentiment Model...")
|
| 70 |
+
self.sentiment_tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment-latest")
|
| 71 |
+
self.sentiment_model = RobertaForSequenceClassification.from_pretrained(
|
| 72 |
+
"cardiffnlp/twitter-roberta-base-sentiment-latest",
|
| 73 |
+
ignore_mismatched_sizes=True
|
| 74 |
+
).to(self.device)
|
| 75 |
+
|
| 76 |
+
# Hindi/English model (we'll fine-tune this)
|
| 77 |
+
print("Loading Indic-BERT Model for Hindi/Hinglish...")
|
| 78 |
+
self.hindi_tokenizer = AutoTokenizer.from_pretrained("ai4bharat/indic-bert")
|
| 79 |
+
self.hindi_model = AlbertForSequenceClassification.from_pretrained(
|
| 80 |
+
"ai4bharat/indic-bert",
|
| 81 |
+
num_labels=3,
|
| 82 |
+
id2label={0: "negative", 1: "neutral", 2: "positive"},
|
| 83 |
+
label2id={"negative": 0, "neutral": 1, "positive": 2}
|
| 84 |
+
).to(self.device)
|
| 85 |
+
# Store label2id mapping for easy access
|
| 86 |
+
self.hindi_label2id = self.hindi_model.config.label2id
|
| 87 |
+
print("Models Initialized.")
|
| 88 |
+
|
| 89 |
+
# Emotion to sentiment mapping
|
| 90 |
+
self.emotion_map = {
|
| 91 |
+
"joy": "positive", "love": "positive", "happy": "positive",
|
| 92 |
+
"anger": "negative", "sadness": "negative", "fear": "negative",
|
| 93 |
+
"surprise": "neutral", "neutral": "neutral", "disgust": "negative", "shame": "negative"
|
| 94 |
+
}
|
| 95 |
+
|
| 96 |
+
# Neutral keywords
|
| 97 |
+
self.neutral_keywords = {
|
| 98 |
+
"ad", "sponsored", "promo", "sale", "discount", "offer", "giveaway",
|
| 99 |
+
"buy", "shop", "link in bio",
|
| 100 |
+
"विज्ञापन", "प्रचार", "ऑफर", "डिस्काउंट", "बिक्री", "लिंक ब���यो में"
|
| 101 |
+
}
|
| 102 |
+
|
| 103 |
+
def train_hindi_model(self, train_data, eval_data=None):
|
| 104 |
+
"""
|
| 105 |
+
Fine-tune the Hindi/English model on labeled data
|
| 106 |
+
Args:
|
| 107 |
+
train_data: List of dicts [{"text": "...", "label": "positive/negative/neutral"}]
|
| 108 |
+
eval_data: Optional evaluation data
|
| 109 |
+
"""
|
| 110 |
+
print("\nStarting Hindi model training...")
|
| 111 |
+
# Convert to dataset
|
| 112 |
+
train_dataset = Dataset.from_pandas(pd.DataFrame(train_data))
|
| 113 |
+
|
| 114 |
+
# Map string labels to integer IDs
|
| 115 |
+
def map_labels_to_ids(examples):
|
| 116 |
+
# Ensure label exists and is in expected range
|
| 117 |
+
labels = []
|
| 118 |
+
for label_str in examples["label"]:
|
| 119 |
+
if label_str in self.hindi_label2id:
|
| 120 |
+
labels.append(self.hindi_label2id[label_str])
|
| 121 |
+
else:
|
| 122 |
+
# Handle unexpected labels, maybe map to neutral or skip
|
| 123 |
+
print(f"Warning: Unexpected label '{label_str}'. Mapping to neutral.")
|
| 124 |
+
labels.append(self.hindi_label2id["neutral"]) # Map unknown to neutral
|
| 125 |
+
examples["label"] = labels
|
| 126 |
+
return examples
|
| 127 |
+
|
| 128 |
+
|
| 129 |
+
train_dataset = train_dataset.map(map_labels_to_ids, batched=True)
|
| 130 |
+
|
| 131 |
+
# Explicitly set the label column to integer type
|
| 132 |
+
train_dataset = train_dataset.cast_column("label", Value("int64"))
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
def tokenize_function(examples):
|
| 136 |
+
return self.hindi_tokenizer(
|
| 137 |
+
examples["text"],
|
| 138 |
+
padding="max_length",
|
| 139 |
+
truncation=True,
|
| 140 |
+
max_length=CONFIG["max_length"]
|
| 141 |
+
)
|
| 142 |
+
|
| 143 |
+
tokenized_train = train_dataset.map(tokenize_function, batched=True)
|
| 144 |
+
|
| 145 |
+
# Training arguments - using eval_strategy instead of evaluation_strategy
|
| 146 |
+
training_args = TrainingArguments(
|
| 147 |
+
output_dir="./results",
|
| 148 |
+
eval_strategy="epoch" if eval_data else "no",
|
| 149 |
+
per_device_train_batch_size=CONFIG["batch_size"],
|
| 150 |
+
per_device_eval_batch_size=CONFIG["batch_size"],
|
| 151 |
+
learning_rate=CONFIG["learning_rate"],
|
| 152 |
+
num_train_epochs=CONFIG["num_train_epochs"],
|
| 153 |
+
weight_decay=0.01,
|
| 154 |
+
save_strategy="no", # Don't save checkpoints during training
|
| 155 |
+
logging_dir='./logs',
|
| 156 |
+
logging_steps=10,
|
| 157 |
+
report_to="none" # Don't report to external services
|
| 158 |
+
)
|
| 159 |
+
|
| 160 |
+
# Compute metrics function
|
| 161 |
+
def compute_metrics(p):
|
| 162 |
+
predictions, labels = p
|
| 163 |
+
predictions = np.argmax(predictions, axis=1)
|
| 164 |
+
return {
|
| 165 |
+
"accuracy": accuracy_score(labels, predictions),
|
| 166 |
+
"f1": f1_score(labels, predictions, average="weighted")
|
| 167 |
+
}
|
| 168 |
+
|
| 169 |
+
# Trainer
|
| 170 |
+
eval_dataset_processed = None
|
| 171 |
+
if eval_data:
|
| 172 |
+
eval_dataset = Dataset.from_pandas(pd.DataFrame(eval_data))
|
| 173 |
+
eval_dataset = eval_dataset.map(map_labels_to_ids, batched=True)
|
| 174 |
+
eval_dataset_processed = eval_dataset.cast_column("label", Value("int64")).map(tokenize_function, batched=True)
|
| 175 |
+
|
| 176 |
+
|
| 177 |
+
trainer = Trainer(
|
| 178 |
+
model=self.hindi_model,
|
| 179 |
+
args=training_args,
|
| 180 |
+
train_dataset=tokenized_train,
|
| 181 |
+
eval_dataset=eval_dataset_processed,
|
| 182 |
+
compute_metrics=compute_metrics if eval_data else None,
|
| 183 |
+
)
|
| 184 |
+
|
| 185 |
+
# Train
|
| 186 |
+
trainer.train()
|
| 187 |
+
|
| 188 |
+
# Save the fine-tuned model
|
| 189 |
+
print("Saving fine-tuned Hindi model...")
|
| 190 |
+
self.hindi_model.save_pretrained("./fine_tuned_hindi_sentiment")
|
| 191 |
+
self.hindi_tokenizer.save_pretrained("./fine_tuned_hindi_sentiment")
|
| 192 |
+
print("Hindi model training complete.")
|
| 193 |
+
|
| 194 |
+
def preprocess_text(self, text):
|
| 195 |
+
"""Enhanced text cleaning with multilingual support"""
|
| 196 |
+
if not text:
|
| 197 |
+
return ""
|
| 198 |
+
|
| 199 |
+
# Convert emojis to text
|
| 200 |
+
text = emoji.demojize(text, delimiters=(" ", " "))
|
| 201 |
+
|
| 202 |
+
# Remove URLs and mentions
|
| 203 |
+
text = re.sub(r"http\S+|@\w+", "", text)
|
| 204 |
+
|
| 205 |
+
# Expand common abbreviations (can be extended)
|
| 206 |
+
abbrevs = {
|
| 207 |
+
r"\bomg\b": "oh my god",
|
| 208 |
+
r"\btbh\b": "to be honest",
|
| 209 |
+
r"\bky\b": "kyun", # Hindi 'why'
|
| 210 |
+
r"\bkb\b": "kab", # Hindi 'when'
|
| 211 |
+
r"\bkya\b": "kya", # Hindi 'what'
|
| 212 |
+
r"\bkahan\b": "kahan", # Hindi 'where'
|
| 213 |
+
r"\bkaisa\b": "kaisa" # Hindi 'how'
|
| 214 |
+
}
|
| 215 |
+
for pattern, replacement in abbrevs.items():
|
| 216 |
+
text = re.sub(pattern, replacement, text, flags=re.IGNORECASE)
|
| 217 |
+
|
| 218 |
+
# Remove extra whitespace
|
| 219 |
+
text = re.sub(r"\s+", " ", text).strip()
|
| 220 |
+
|
| 221 |
+
return text
|
| 222 |
+
|
| 223 |
+
def detect_language(self, text):
|
| 224 |
+
"""Improved language detection"""
|
| 225 |
+
if re.search(r"[\u0900-\u097F]", text): # Devanagari script (Hindi, Marathi etc.)
|
| 226 |
+
return "hi"
|
| 227 |
+
# Simple check for common Hindi/Hinglish words (can be expanded)
|
| 228 |
+
hinglish_keywords = ["hai", "kyun", "nahi", "kya", "acha", "bas", "yaar", "main"]
|
| 229 |
+
if any(re.search(rf"\b{kw}\b", text.lower()) for kw in hinglish_keywords):
|
| 230 |
+
return "hi-latin"
|
| 231 |
+
# Fallback to English if no strong Hindi/Hinglish indicators
|
| 232 |
+
return "en"
|
| 233 |
+
|
| 234 |
+
|
| 235 |
+
def analyze_content(self, text):
|
| 236 |
+
"""Main analysis function with improved confidence handling"""
|
| 237 |
+
processed = self.preprocess_text(text)
|
| 238 |
+
|
| 239 |
+
if not processed:
|
| 240 |
+
return "neutral", 0.5, {"reason": "empty_text"}
|
| 241 |
+
|
| 242 |
+
lang = self.detect_language(processed)
|
| 243 |
+
|
| 244 |
+
# Check for neutral keywords first with higher confidence
|
| 245 |
+
if any(re.search(rf"\b{re.escape(kw)}\b", processed.lower()) for kw in self.neutral_keywords):
|
| 246 |
+
return "neutral", 0.9, {"reason": "neutral_keyword"}
|
| 247 |
+
|
| 248 |
+
try:
|
| 249 |
+
if lang in ("hi", "hi-latin"):
|
| 250 |
+
# Use Hindi model for Hindi/Hinglish
|
| 251 |
+
return self._analyze_hindi_content(processed)
|
| 252 |
+
else:
|
| 253 |
+
# Use ensemble for English
|
| 254 |
+
return self._analyze_english_content(processed)
|
| 255 |
+
except Exception as e:
|
| 256 |
+
print(f"Analysis error for text '{processed[:50]}...': {e}")
|
| 257 |
+
return "neutral", 0.5, {"error": str(e), "original_text": text[:50]}
|
| 258 |
+
|
| 259 |
+
def _analyze_hindi_content(self, text):
|
| 260 |
+
"""Analyze Hindi content with fine-tuned model"""
|
| 261 |
+
inputs = self.hindi_tokenizer(
|
| 262 |
+
text,
|
| 263 |
+
return_tensors="pt",
|
| 264 |
+
truncation=True,
|
| 265 |
+
padding=True,
|
| 266 |
+
max_length=CONFIG["max_length"]
|
| 267 |
+
).to(self.device)
|
| 268 |
+
|
| 269 |
+
with torch.no_grad():
|
| 270 |
+
outputs = self.hindi_model(**inputs)
|
| 271 |
+
|
| 272 |
+
probs = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
| 273 |
+
pred_idx = torch.argmax(probs).item()
|
| 274 |
+
confidence = probs[0][pred_idx].item()
|
| 275 |
+
|
| 276 |
+
label = self.hindi_model.config.id2label[pred_idx]
|
| 277 |
+
return label, confidence, {"model": "fine-tuned-indic-bert", "lang": "hi"}
|
| 278 |
+
|
| 279 |
+
def _analyze_english_content(self, text):
|
| 280 |
+
"""Analyze English content with ensemble approach"""
|
| 281 |
+
# Emotion analysis
|
| 282 |
+
emotion_inputs = self.emotion_tokenizer(
|
| 283 |
+
text,
|
| 284 |
+
return_tensors="pt",
|
| 285 |
+
truncation=True,
|
| 286 |
+
max_length=CONFIG["max_length"]
|
| 287 |
+
).to(self.device)
|
| 288 |
+
|
| 289 |
+
with torch.no_grad():
|
| 290 |
+
emotion_outputs = self.emotion_model(**emotion_inputs)
|
| 291 |
+
|
| 292 |
+
emotion_probs = torch.nn.functional.softmax(emotion_outputs.logits, dim=-1)
|
| 293 |
+
emotion_pred = torch.argmax(emotion_probs).item()
|
| 294 |
+
emotion_label = self.emotion_model.config.id2label[emotion_pred]
|
| 295 |
+
emotion_score = emotion_probs[0][emotion_pred].item()
|
| 296 |
+
|
| 297 |
+
# Sentiment analysis
|
| 298 |
+
sentiment_inputs = self.sentiment_tokenizer(
|
| 299 |
+
text,
|
| 300 |
+
return_tensors="pt",
|
| 301 |
+
truncation=True,
|
| 302 |
+
max_length=CONFIG["max_length"]
|
| 303 |
+
).to(self.device)
|
| 304 |
+
|
| 305 |
+
with torch.no_grad():
|
| 306 |
+
sentiment_outputs = self.sentiment_model(**sentiment_inputs)
|
| 307 |
+
|
| 308 |
+
sentiment_probs = torch.nn.functional.softmax(sentiment_outputs.logits, dim=-1)
|
| 309 |
+
sentiment_pred = torch.argmax(sentiment_probs).item()
|
| 310 |
+
# sentiment_label comes as 'LABEL_0', 'LABEL_1', 'LABEL_2'
|
| 311 |
+
# Need to map these to 'negative', 'neutral', 'positive'
|
| 312 |
+
# The roberta-base-sentiment-latest model has mapping: 0: Negative, 1: Neutral, 2: Positive
|
| 313 |
+
sentiment_label_mapping = {0: 'negative', 1: 'neutral', 2: 'positive'}
|
| 314 |
+
sentiment_label = sentiment_label_mapping.get(sentiment_pred, 'neutral') # Default to neutral if mapping fails
|
| 315 |
+
sentiment_score = sentiment_probs[0][sentiment_pred].item()
|
| 316 |
+
|
| 317 |
+
# Combine results
|
| 318 |
+
mapped_emotion = self.emotion_map.get(emotion_label, "neutral")
|
| 319 |
+
|
| 320 |
+
# Prioritize high-confidence sentiment
|
| 321 |
+
if sentiment_score > CONFIG["confidence_threshold"]:
|
| 322 |
+
final_label = sentiment_label
|
| 323 |
+
final_confidence = sentiment_score
|
| 324 |
+
reason = "high_sentiment_confidence"
|
| 325 |
+
# Then prioritize high-confidence emotion if not neutral
|
| 326 |
+
elif emotion_score > CONFIG["confidence_threshold"] and mapped_emotion != "neutral":
|
| 327 |
+
final_label = mapped_emotion
|
| 328 |
+
final_confidence = emotion_score
|
| 329 |
+
reason = "high_emotion_confidence"
|
| 330 |
+
else:
|
| 331 |
+
# Fallback mechanism for lower confidence or conflicting results
|
| 332 |
+
# A simple weighted sum or voting could be used,
|
| 333 |
+
# but let's use a clearer logic:
|
| 334 |
+
# If both are low confidence or neutral, and their results align, use that.
|
| 335 |
+
# Otherwise, default to neutral or pick the one with slightly higher confidence
|
| 336 |
+
# if it's not neutral.
|
| 337 |
+
|
| 338 |
+
if sentiment_label == mapped_emotion and sentiment_label != "neutral":
|
| 339 |
+
final_label = sentiment_label
|
| 340 |
+
final_confidence = (sentiment_score + emotion_score) / 2
|
| 341 |
+
reason = "emotion_sentiment_agreement"
|
| 342 |
+
elif sentiment_label != "neutral" and sentiment_score > emotion_score and sentiment_score > 0.4: # Use sentiment if somewhat confident
|
| 343 |
+
final_label = sentiment_label
|
| 344 |
+
final_confidence = sentiment_score * 0.9 # Slightly reduce confidence
|
| 345 |
+
reason = "sentiment_slightly_higher"
|
| 346 |
+
elif mapped_emotion != "neutral" and emotion_score > sentiment_score and emotion_score > 0.4: # Use emotion if somewhat confident
|
| 347 |
+
final_label = mapped_emotion
|
| 348 |
+
final_confidence = emotion_score * 0.9 # Slightly reduce confidence
|
| 349 |
+
reason = "emotion_slightly_higher"
|
| 350 |
+
else: # Default to neutral if no strong signal
|
| 351 |
+
final_label = "neutral"
|
| 352 |
+
final_confidence = 0.6 # Assign a baseline neutral confidence
|
| 353 |
+
reason = "fallback_to_neutral"
|
| 354 |
+
|
| 355 |
+
|
| 356 |
+
return final_label, final_confidence, {
|
| 357 |
+
"emotion_label": emotion_label,
|
| 358 |
+
"emotion_score": emotion_score,
|
| 359 |
+
"sentiment_label": sentiment_label,
|
| 360 |
+
"sentiment_score": sentiment_score,
|
| 361 |
+
"mapped_emotion": mapped_emotion,
|
| 362 |
+
"model": "ensemble",
|
| 363 |
+
"lang": "en",
|
| 364 |
+
"reason": reason
|
| 365 |
+
}
|
| 366 |
+
|
| 367 |
+
def analyze_reels(self, reels, max_to_analyze=100):
|
| 368 |
+
"""Batch analysis with improved neutral handling"""
|
| 369 |
+
print(f"\n--- Starting Sentiment Analysis ({max_to_analyze} reels) ---")
|
| 370 |
+
results = Counter()
|
| 371 |
+
detailed_results = []
|
| 372 |
+
|
| 373 |
+
for i, reel in enumerate(reels[:max_to_analyze], 1):
|
| 374 |
+
caption = getattr(reel, 'caption_text', '') or getattr(reel, 'caption', '') or ''
|
| 375 |
+
print(f"Analyzing sentiment for reel {i}/{max_to_analyze} (ID: {reel.id})...")
|
| 376 |
+
label, confidence, details = self.analyze_content(caption)
|
| 377 |
+
results[label] += 1
|
| 378 |
+
detailed_results.append({
|
| 379 |
+
"reel_id": reel.id, # Add reel ID
|
| 380 |
+
"text": caption,
|
| 381 |
+
"label": label,
|
| 382 |
+
"confidence": confidence,
|
| 383 |
+
"details": details
|
| 384 |
+
})
|
| 385 |
+
|
| 386 |
+
print("\nInitial Sentiment Distribution:", dict(results))
|
| 387 |
+
|
| 388 |
+
# Post-analysis neutral reduction if a significant portion is neutral
|
| 389 |
+
total_analyzed = sum(results.values())
|
| 390 |
+
if total_analyzed > 0 and results["neutral"] / total_analyzed > CONFIG["neutral_reanalysis_threshold"]:
|
| 391 |
+
print(f"High neutral count ({results['neutral']}). Attempting to re-analyze...")
|
| 392 |
+
self._reduce_neutrals(results, detailed_results)
|
| 393 |
+
print("Sentiment distribution after re-analysis:", dict(results))
|
| 394 |
+
|
| 395 |
+
print("Sentiment Analysis Complete.")
|
| 396 |
+
return results, detailed_results
|
| 397 |
+
|
| 398 |
+
def _reduce_neutrals(self, results, detailed_results):
|
| 399 |
+
"""Apply additional techniques to reduce neutral classifications"""
|
| 400 |
+
neutrals_to_recheck = [item for item in detailed_results if item["label"] == "neutral" and item["confidence"] < 0.8]
|
| 401 |
+
|
| 402 |
+
print(f"Re-checking {len(neutrals_to_recheck)} neutral reels...")
|
| 403 |
+
|
| 404 |
+
for item in neutrals_to_recheck:
|
| 405 |
+
original_text = item["text"]
|
| 406 |
+
processed_text = self.preprocess_text(original_text)
|
| 407 |
+
text_lower = processed_text.lower()
|
| 408 |
+
|
| 409 |
+
# Try keyword analysis for strong positive/negative signals
|
| 410 |
+
pos_keywords_strong = {"amazing", "love", "best", "fantastic", "awesome", "superb", "great",
|
| 411 |
+
"अद्भुत", "शानदार", "बहुत अच्छा", "मज़ेदार"}
|
| 412 |
+
neg_keywords_strong = {"hate", "worst", "bad", "terrible", "awful", "disappointed", "horrible", "cringe",
|
| 413 |
+
"खराब", "बेकार", "बहुत बुरा", "घटिया"}
|
| 414 |
+
|
| 415 |
+
is_strong_pos = any(re.search(rf"\b{re.escape(kw)}\b", text_lower) for kw in pos_keywords_strong)
|
| 416 |
+
is_strong_neg = any(re.search(rf"\b{re.escape(kw)}\b", text_lower) for kw in neg_keywords_strong)
|
| 417 |
+
|
| 418 |
+
if is_strong_pos and not is_strong_neg:
|
| 419 |
+
# Reclassify as positive if strong positive keywords found and no strong negative ones
|
| 420 |
+
results["neutral"] -= 1
|
| 421 |
+
results["positive"] += 1
|
| 422 |
+
item.update({
|
| 423 |
+
"label": "positive",
|
| 424 |
+
"confidence": min(0.95, item["confidence"] + 0.3), # Increase confidence
|
| 425 |
+
"reanalyzed": True,
|
| 426 |
+
"reanalysis_reason": "strong_pos_keywords"
|
| 427 |
+
})
|
| 428 |
+
# print(f" Reclassified reel {item['reel_id']} to Positive (Keywords)")
|
| 429 |
+
elif is_strong_neg and not is_strong_pos:
|
| 430 |
+
# Reclassify as negative if strong negative keywords found and no strong positive ones
|
| 431 |
+
results["neutral"] -= 1
|
| 432 |
+
results["negative"] += 1
|
| 433 |
+
item.update({
|
| 434 |
+
"label": "negative",
|
| 435 |
+
"confidence": min(0.95, item["confidence"] + 0.3), # Increase confidence
|
| 436 |
+
"reanalyzed": True,
|
| 437 |
+
"reanalysis_reason": "strong_neg_keywords"
|
| 438 |
+
})
|
| 439 |
+
# print(f" Reclassified reel {item['reel_id']} to Negative (Keywords)")
|
| 440 |
+
# Add other potential re-analysis rules here if needed
|
| 441 |
+
# e.g., checking for question marks (might indicate neutral query),
|
| 442 |
+
# or checking length (very short captions often neutral)
|
| 443 |
+
# For now, we stick to keyword-based re-analysis for simplicity
|
| 444 |
+
|
| 445 |
+
|
| 446 |
+
def plot_sentiment_pie(results, title="Reels Sentiment Analysis"):
|
| 447 |
+
"""
|
| 448 |
+
Creates a pie chart from sentiment analysis results and returns the matplotlib figure.
|
| 449 |
+
|
| 450 |
+
Args:
|
| 451 |
+
results: Counter object or dict with 'positive', 'neutral', 'negative' keys
|
| 452 |
+
title: Chart title
|
| 453 |
+
|
| 454 |
+
Returns:
|
| 455 |
+
Matplotlib Figure object, or None if no data.
|
| 456 |
+
"""
|
| 457 |
+
labels = ['Positive', 'Neutral', 'Negative']
|
| 458 |
+
sizes = [results.get('positive', 0), results.get('neutral', 0), results.get('negative', 0)]
|
| 459 |
+
|
| 460 |
+
if sum(sizes) == 0:
|
| 461 |
+
return None
|
| 462 |
+
|
| 463 |
+
colors = ['#4CAF50', '#FFC107', '#F44336']
|
| 464 |
+
explode = (0.05, 0, 0.05)
|
| 465 |
+
|
| 466 |
+
fig, ax = plt.subplots(figsize=(8, 6))
|
| 467 |
+
|
| 468 |
+
filtered_labels = [label for i, label in enumerate(labels) if sizes[i] > 0]
|
| 469 |
+
filtered_sizes = [size for size in sizes if size > 0]
|
| 470 |
+
filtered_colors = [colors[i] for i, size in enumerate(sizes) if size > 0]
|
| 471 |
+
explode_map = {'Positive': 0.05, 'Neutral': 0, 'Negative': 0.05}
|
| 472 |
+
filtered_explode = [explode_map.get(label, 0) for label in filtered_labels]
|
| 473 |
+
|
| 474 |
+
ax.pie(filtered_sizes, explode=filtered_explode, labels=filtered_labels, colors=filtered_colors,
|
| 475 |
+
autopct='%1.1f%%', shadow=True, startangle=140,
|
| 476 |
+
textprops={'fontsize': 12, 'color': 'black'})
|
| 477 |
+
|
| 478 |
+
ax.axis('equal')
|
| 479 |
+
plt.title(title, fontsize=16, pad=20)
|
| 480 |
+
plt.tight_layout()
|
| 481 |
+
|
| 482 |
+
# Return the figure object
|
| 483 |
+
return fig
|
| 484 |
+
|
| 485 |
+
# --- Content Analysis Logic ---
|
| 486 |
+
# Content categories
|
| 487 |
+
content_categories = [
|
| 488 |
+
"news", "meme", "sports", "science", "music", "movie",
|
| 489 |
+
"gym", "comedy", "food", "technology", "travel", "fashion", "art", "business"
|
| 490 |
+
]
|
| 491 |
+
|
| 492 |
+
category_keywords = {
|
| 493 |
+
"news": {"news", "update", "breaking", "reported", "headlines"},
|
| 494 |
+
"meme": {"meme", "funny", "lol", "haha", "relatable"},
|
| 495 |
+
"sports": {"sports", "cricket", "football", "match", "game", "team", "score"},
|
| 496 |
+
"science": {"science", "research", "discovery", "experiment", "facts", "theory"},
|
| 497 |
+
"music": {"music", "song", "album", "release", "artist", "beats"},
|
| 498 |
+
"movie": {"movie", "film", "bollywood", "trailer", "series", "actor"},
|
| 499 |
+
"gym": {"gym", "workout", "fitness", "exercise", "training", "bodybuilding"},
|
| 500 |
+
"comedy": {"comedy", "joke", "humor", "standup", "skit", "laugh"},
|
| 501 |
+
"food": {"food", "recipe", "cooking", "eat", "delicious", "restaurant", "kitchen"},
|
| 502 |
+
"technology": {"tech", "phone", "computer", "ai", "gadget", "software", "innovation"},
|
| 503 |
+
"travel": {"travel", "trip", "vacation", "explore", "destination", "adventure"},
|
| 504 |
+
"fashion": {"fashion", "style", "ootd", "outfit", "trends", "clothing"},
|
| 505 |
+
"art": {"art", "artist", "painting", "drawing", "creative", "design"},
|
| 506 |
+
"business": {"business", "startup", "marketing", "money", "finance", "entrepreneur"}
|
| 507 |
+
}
|
| 508 |
+
|
| 509 |
+
def preprocess_text_cat(text):
|
| 510 |
+
"""Basic text cleaning for categorization"""
|
| 511 |
+
if not text:
|
| 512 |
+
return ""
|
| 513 |
+
text = re.sub(r"http\S+|@\w+|#\w+", "", text).lower()
|
| 514 |
+
text = re.sub(r"\s+", " ", text).strip()
|
| 515 |
+
return text
|
| 516 |
+
|
| 517 |
+
def classify_reel_content(text):
|
| 518 |
+
"""Classify content using keywords and zero-shot model"""
|
| 519 |
+
global content_classifier_pipeline # Use the global pipeline
|
| 520 |
+
|
| 521 |
+
processed = preprocess_text_cat(text)
|
| 522 |
+
|
| 523 |
+
if not processed or len(processed.split()) < 2:
|
| 524 |
+
return "other", {"reason": "short_text"}
|
| 525 |
+
|
| 526 |
+
for category, keywords in category_keywords.items():
|
| 527 |
+
if any(re.search(rf"\b{re.escape(keyword)}\b", processed) for keyword in keywords):
|
| 528 |
+
return category, {"reason": "keyword_match"}
|
| 529 |
+
|
| 530 |
+
model_text = processed[:256]
|
| 531 |
+
|
| 532 |
+
if content_classifier_pipeline is None:
|
| 533 |
+
# Should not happen if initialized in analyze_reels_gradio or globally
|
| 534 |
+
print("Content classifier pipeline not initialized in classify_reel_content.")
|
| 535 |
+
return "other", {"reason": "classifier_not_initialized"}
|
| 536 |
+
|
| 537 |
+
try:
|
| 538 |
+
result = content_classifier_pipeline(model_text, content_categories, multi_label=False)
|
| 539 |
+
top_label = result['labels'][0]
|
| 540 |
+
top_score = result['scores'][0]
|
| 541 |
+
|
| 542 |
+
if top_score > 0.5:
|
| 543 |
+
return top_label, {"reason": "model_prediction", "score": top_score}
|
| 544 |
+
else:
|
| 545 |
+
return "other", {"reason": "low_model_confidence", "score": top_score}
|
| 546 |
+
|
| 547 |
+
except Exception as e:
|
| 548 |
+
print(f"Error during zero-shot classification for text '{model_text}...': {e}")
|
| 549 |
+
return "other", {"reason": "classification_error"}
|
| 550 |
+
|
| 551 |
+
|
| 552 |
+
def plot_category_distribution(counter, title="Reels Content Distribution"):
|
| 553 |
+
"""
|
| 554 |
+
Generate pie chart from category counts and returns the matplotlib figure.
|
| 555 |
+
|
| 556 |
+
Args:
|
| 557 |
+
counter: Counter object with category counts.
|
| 558 |
+
title: Chart title.
|
| 559 |
+
|
| 560 |
+
Returns:
|
| 561 |
+
Matplotlib Figure object, or None if no data.
|
| 562 |
+
"""
|
| 563 |
+
labels = []
|
| 564 |
+
sizes = []
|
| 565 |
+
|
| 566 |
+
total = sum(counter.values())
|
| 567 |
+
if total == 0:
|
| 568 |
+
return None
|
| 569 |
+
|
| 570 |
+
threshold = total * 0.02
|
| 571 |
+
other_count = 0
|
| 572 |
+
|
| 573 |
+
sorted_categories = counter.most_common()
|
| 574 |
+
|
| 575 |
+
for category, count in sorted_categories:
|
| 576 |
+
if count >= threshold and category != "other":
|
| 577 |
+
labels.append(category.replace('_', ' ').title())
|
| 578 |
+
sizes.append(count)
|
| 579 |
+
elif category == "other":
|
| 580 |
+
other_count += count
|
| 581 |
+
else:
|
| 582 |
+
other_count += count
|
| 583 |
+
|
| 584 |
+
if other_count > 0:
|
| 585 |
+
labels.append("Other")
|
| 586 |
+
sizes.append(other_count)
|
| 587 |
+
|
| 588 |
+
if not sizes:
|
| 589 |
+
return None
|
| 590 |
+
|
| 591 |
+
fig, ax = plt.subplots(figsize=(10, 8))
|
| 592 |
+
colors = plt.cm.viridis(np.linspace(0, 1, len(sizes)))
|
| 593 |
+
|
| 594 |
+
ax.pie(
|
| 595 |
+
sizes,
|
| 596 |
+
labels=labels,
|
| 597 |
+
autopct='%1.1f%%',
|
| 598 |
+
startangle=140,
|
| 599 |
+
colors=colors,
|
| 600 |
+
wedgeprops={'edgecolor': 'white', 'linewidth': 1},
|
| 601 |
+
textprops={'fontsize': 11, 'color': 'black'}
|
| 602 |
)
|
| 603 |
+
|
| 604 |
+
plt.title(title, pad=20, fontsize=15)
|
| 605 |
+
plt.axis('equal')
|
| 606 |
+
plt.tight_layout()
|
| 607 |
+
|
| 608 |
+
# Return the figure object
|
| 609 |
+
return fig
|
| 610 |
+
|
| 611 |
+
|
| 612 |
+
# --- Gradio-Compatible Functions ---
|
| 613 |
+
# Preset username from Colab secrets
|
| 614 |
+
# Ensure USERNAME is set in your Colab secrets
|
| 615 |
+
USERNAME = "jattman1993" # Replace with your preset username or fetch from secrets if needed
|
| 616 |
+
|
| 617 |
+
def login_gradio_auto():
|
| 618 |
+
"""Gradio-compatible function for automatic login."""
|
| 619 |
+
global cl
|
| 620 |
+
try:
|
| 621 |
+
# Fetch password securely from Colab secrets
|
| 622 |
+
PASSWORD = userdata.get('password')
|
| 623 |
+
except Exception as e:
|
| 624 |
+
return f"Error accessing password secret: {e}", gr.update(visible=False) # Hide OTP input on error
|
| 625 |
+
|
| 626 |
+
if not PASSWORD:
|
| 627 |
+
return "Error: Instagram password not found in Colab secrets. Please add it to Colab secrets with the key 'password'.", gr.update(visible=False) # Hide OTP input
|
| 628 |
+
|
| 629 |
+
cl = Client()
|
| 630 |
+
|
| 631 |
+
try:
|
| 632 |
+
cl.login(USERNAME, PASSWORD)
|
| 633 |
+
# If login is successful, return success message and hide OTP input
|
| 634 |
+
return f"Successfully logged in as {USERNAME}", gr.update(visible=False)
|
| 635 |
+
except Exception as e:
|
| 636 |
+
cl = None # Ensure cl is None on failure
|
| 637 |
+
error_message = str(e)
|
| 638 |
+
if "Two factor challenged" in error_message or "challenge_required" in error_message:
|
| 639 |
+
# If 2FA is required, show the OTP input field
|
| 640 |
+
return f"Login failed: Two-factor authentication required. Please enter the code below.", gr.update(visible=True)
|
| 641 |
+
else:
|
| 642 |
+
# For other errors, hide OTP input and show error message
|
| 643 |
+
return f"Error during login: {error_message}", gr.update(visible=False)
|
| 644 |
+
|
| 645 |
+
# Function to handle OTP submission (if 2FA was required)
|
| 646 |
+
def submit_otp_gradio(otp_code):
|
| 647 |
+
"""Gradio-compatible function to submit OTP."""
|
| 648 |
+
global cl
|
| 649 |
+
if cl is None:
|
| 650 |
+
return "Error: Not logged in or client not initialized.", "", gr.update(visible=False) # Hide OTP input
|
| 651 |
+
|
| 652 |
+
try:
|
| 653 |
+
# Assuming the challenge was set up correctly in the login attempt
|
| 654 |
+
# and the cl object has the challenge_data
|
| 655 |
+
cl.two_factor_login(otp_code)
|
| 656 |
+
# If OTP is successful
|
| 657 |
+
return f"OTP successful. Successfully logged in as {USERNAME}.", "", gr.update(visible=False) # Clear OTP input and hide field
|
| 658 |
+
except Exception as e:
|
| 659 |
+
# If OTP fails
|
| 660 |
+
return f"OTP submission failed: {e}. Please try again.", "", gr.update(visible=True) # Keep OTP input visible
|
| 661 |
+
|
| 662 |
+
|
| 663 |
+
def fetch_reels_gradio():
|
| 664 |
+
"""Gradio-compatible function to fetch explore reels."""
|
| 665 |
+
global cl
|
| 666 |
+
global explore_reels_list
|
| 667 |
+
|
| 668 |
+
if cl is None:
|
| 669 |
+
explore_reels_list = [] # Ensure list is empty on failure
|
| 670 |
+
return "Error: Not logged in. Please log in first."
|
| 671 |
+
|
| 672 |
+
try:
|
| 673 |
+
# Fetch a limited number of reels for demonstration purposes
|
| 674 |
+
# You might want to make this number configurable later
|
| 675 |
+
fetched_reels = cl.explore_reels()[:100] # Fetch up to 100 for analysis
|
| 676 |
+
explore_reels_list = fetched_reels
|
| 677 |
+
if explore_reels_list:
|
| 678 |
+
return f"Successfully fetched {len(explore_reels_list)} explore reels."
|
| 679 |
+
else:
|
| 680 |
+
explore_reels_list = [] # Ensure it's an empty list
|
| 681 |
+
return "Fetched 0 explore reels."
|
| 682 |
+
except Exception as e:
|
| 683 |
+
explore_reels_list = [] # Ensure it's an empty list on error
|
| 684 |
+
return f"Error fetching explore reels: {e}"
|
| 685 |
|
| 686 |
|
| 687 |
def analyze_reels_gradio(max_to_analyze):
|
|
|
|
| 702 |
return "Error: No reels available to analyze.", None, None
|
| 703 |
|
| 704 |
|
| 705 |
+
# Initialize sentiment analyzer if not already done
|
| 706 |
if sentiment_analyzer_instance is None:
|
| 707 |
+
try:
|
| 708 |
+
sentiment_analyzer_instance = ReelSentimentAnalyzer()
|
| 709 |
+
# Optional: Train Hindi model if needed and data is available
|
| 710 |
+
# sample_train_data = [...] # Define your training data
|
| 711 |
+
# sentiment_analyzer_instance.train_hindi_model(sample_train_data)
|
| 712 |
+
except Exception as e:
|
| 713 |
+
return f"Error initializing Sentiment Analyzer: {e}", None, None
|
| 714 |
+
|
| 715 |
+
# Initialize content classifier pipeline if not already done
|
| 716 |
if content_classifier_pipeline is None:
|
| 717 |
+
try:
|
| 718 |
+
print("Initializing Content Classifier Pipeline...")
|
| 719 |
+
content_classifier_pipeline = pipeline(
|
| 720 |
+
"zero-shot-classification",
|
| 721 |
+
model="facebook/bart-large-mnli",
|
| 722 |
+
device=0 if torch.cuda.is_available() else -1 # Use GPU if available
|
| 723 |
+
)
|
| 724 |
+
print("Content Classifier Pipeline Initialized.")
|
| 725 |
+
except Exception as e:
|
| 726 |
+
return f"Error initializing Content Classifier: {e}", None, None
|
| 727 |
|
| 728 |
|
| 729 |
analysis_status_messages = []
|
|
|
|
| 776 |
return final_status_message, sentiment_plot_figure, content_plot_figure
|
| 777 |
|
| 778 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 779 |
# --- Gradio Blocks Interface ---
|
| 780 |
with gr.Blocks() as demo:
|
| 781 |
gr.Markdown("# Instagram Reels Analysis")
|
| 782 |
+
|
| 783 |
+
# Login Section
|
| 784 |
with gr.Row():
|
| 785 |
+
connect_button = gr.Button("Connect Instagram")
|
|
|
|
| 786 |
login_status_output = gr.Label(label="Login Status")
|
| 787 |
|
| 788 |
+
# OTP Input (initially hidden)
|
| 789 |
+
with gr.Row(visible=False) as otp_row:
|
| 790 |
+
otp_input = gr.Textbox(label="Enter OTP Code")
|
| 791 |
+
otp_submit_button = gr.Button("Submit OTP")
|
| 792 |
+
|
| 793 |
+
|
| 794 |
+
# Fetch Reels Section
|
| 795 |
with gr.Row():
|
| 796 |
fetch_button = gr.Button("Fetch Reels")
|
| 797 |
fetch_status_output = gr.Label(label="Fetch Status")
|
| 798 |
|
| 799 |
+
# Analysis Section
|
| 800 |
with gr.Row():
|
| 801 |
max_reels_input = gr.Slider(minimum=1, maximum=100, value=10, step=1, label="Number of Reels to Analyze")
|
| 802 |
analyze_button = gr.Button("Analyze Reels")
|
| 803 |
|
| 804 |
analyze_status_output = gr.Label(label="Analysis Status")
|
| 805 |
|
| 806 |
+
# Results Section
|
| 807 |
with gr.Row():
|
| 808 |
# Sentiment Analysis Outputs
|
| 809 |
with gr.Column():
|
|
|
|
| 816 |
content_plot_output = gr.Plot(label="Content Distribution")
|
| 817 |
|
| 818 |
|
| 819 |
+
# Link buttons to functions
|
| 820 |
+
connect_button.click(
|
| 821 |
+
fn=login_gradio_auto,
|
| 822 |
+
inputs=None, # No direct inputs, username is preset
|
| 823 |
+
outputs=[login_status_output, otp_row]
|
| 824 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 825 |
|
| 826 |
+
otp_submit_button.click(
|
| 827 |
+
fn=submit_otp_gradio,
|
| 828 |
+
inputs=otp_input,
|
| 829 |
+
outputs=[login_status_output, otp_input, otp_row]
|
| 830 |
)
|
| 831 |
|
| 832 |
fetch_button.click(
|
| 833 |
+
fn=fetch_reels_gradio,
|
| 834 |
inputs=None, # No direct inputs needed for fetching
|
| 835 |
outputs=fetch_status_output
|
| 836 |
)
|
| 837 |
|
|
|
|
| 838 |
analyze_button.click(
|
| 839 |
fn=analyze_reels_gradio,
|
| 840 |
inputs=max_reels_input, # Input is the slider value
|
| 841 |
outputs=[analyze_status_output, sentiment_plot_output, content_plot_output] # Outputs are status and the two plots
|
| 842 |
)
|
| 843 |
|
| 844 |
+
# --- Launch the Gradio app ---
|
| 845 |
+
if __name__ == "__main__":
|
| 846 |
+
# This block ensures the app only launches when the script is executed directly
|
| 847 |
+
# (e.g., when running `python deploy.py` or `gradio deploy.py`)
|
| 848 |
+
# It prevents the app from launching automatically when the file is written in Colab.
|
| 849 |
+
# When deploying to Hugging Face Spaces via `gradio deploy`, it will find and run this.
|
| 850 |
+
# For Colab sharing, you can use `demo.launch(share=True)` outside this if block.
|
| 851 |
+
|
| 852 |
+
# For standalone deploy.py, you might want to uncomment this:
|
| 853 |
+
# demo.launch()
|
| 854 |
+
|
| 855 |
+
# For Colab and `gradio deploy` compatibility, the `gradio deploy` command handles launching.
|
| 856 |
+
# The `demo.launch()` line is removed here from the main script block.
|
| 857 |
+
pass # Keep the __main__ block if needed for local testing setup
|
| 858 |
+
|
| 859 |
+
|
| 860 |
+
# Note: When using `gradio deploy` on Hugging Face Spaces, the `demo` object is
|
| 861 |
+
# automatically discovered and launched. You don't need `demo.launch()` here
|
| 862 |
+
# for that specific deployment method.
|
| 863 |
+
|
| 864 |
+
# For running directly in Colab to test before deploying:
|
| 865 |
+
# demo.launch(share=True)
|