Captioner / app.py
Jiayi-Pan's picture
Update app.py
69577c2 verified
raw
history blame
2.52 kB
import spaces
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
__version__,
GenerationConfig,
)
from PIL import Image
import gradio as gr
import argparse
import tempfile
from PIL import Image
import easyocr
import torch
assert (
__version__ == "4.32.0"
), "Please use transformers version 4.32.0, pip install transformers==4.32.0"
print("=== init OCR engine===")
reader = easyocr.Reader(
["en"],
gpu=False
) # this needs to run only once to load the model into memory
print("=== Success, Now the Captioner VLM===")
def get_easy_text(img_file):
out = reader.readtext(img_file, detail=0, paragraph=True)
if isinstance(out, list):
return "\n".join(out)
return out
model_name = "DigitalAgent/Captioner"
if torch.cuda.is_available():
device = torch.device("cuda")
else:
device = torch.device("cpu")
model = (
AutoModelForCausalLM.from_pretrained(
model_name, trust_remote_code=True
).to(device)
.eval()
.half()
)
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
print("=== Success, Now serving===")
generation_config = GenerationConfig.from_dict(
{
"chat_format": "chatml",
"do_sample": True,
"eos_token_id": 151643,
"max_new_tokens": 2048,
"max_window_size": 6144,
"pad_token_id": 151643,
"repetition_penalty": 1.2,
"top_k": 0,
"top_p": 0.3,
"transformers_version": "4.31.0",
}
)
@spaces.GPU
def generate(image: Image):
with tempfile.NamedTemporaryFile(suffix=".jpg", delete=True) as tmp:
image.save(tmp.name)
ocr_result = get_easy_text(tmp.name)
text = f"Please describe the screenshot above in details.\nOCR Result:\n{ocr_result}"
history = []
input_data = [{"image": tmp.name}, {"text": text}]
query = tokenizer.from_list_format(input_data)
response, _ = model.chat(
tokenizer, query=query, history=history, generation_config=generation_config
)
return response
demo = gr.Interface(
fn=generate, inputs=[gr.Image(type="pil")], outputs=gr.Textbox(), concurrency_limit=1,
examples="./examples",
title="A Dense Captioner optimized for Graphical User Interface",
description="[Project Page](https://agent-eval-refine.github.io/) [Model](https://huggingface.co/Agent-Eval-Refine/Captioner) [Data](https://huggingface.co/datasets/Agent-Eval-Refine/GUI-Dense-Descriptions)"
)
demo.queue().launch()