Spaces:
Runtime error
Runtime error
import streamlit as st | |
import tensorflow as tf | |
#st.set_option('deprecation.showFileUploaderEncoding', False) | |
def load_model(): | |
model=tf.keras.models.load_model('model.h5') | |
return model | |
with st.spinner('Model is being loaded..'): | |
model=load_model() | |
st.write(""" | |
# Facial Expression Recognition | |
""" | |
) | |
file = st.file_uploader("Please upload a picture of your face..", type=["jpg", "png"]) | |
import cv2 | |
from PIL import Image, ImageOps | |
import numpy as np | |
st.set_option('deprecation.showfileUploaderEncoding', False) | |
def import_and_predict(image_data, model): | |
size = (48,48) | |
image = ImageOps.fit(image_data, size, Image.ANTIALIAS) | |
image = np.asarray(image) | |
img = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) | |
img_resize = (cv2.resize(img, dsize=(48, 48))) | |
img_reshape = img.reshape(1,48,48,1) | |
prediction = model.predict(img_reshape) | |
return prediction | |
if file is None: | |
st.text("Please upload an image file") | |
else: | |
image = Image.open(file) | |
st.image(image, use_column_width=True) | |
predictions = import_and_predict(image, model) | |
class_names = ['Angry', 'Neutral', 'Scared', 'Happy', 'Sad', 'Surprised'] | |
score = tf.nn.softmax(predictions[0]) | |
#st.write(predictions) | |
st.write("The person in the image is {} ".format(class_names[np.argmax(predictions)])) | |