Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,44 +1,48 @@
|
|
1 |
-
import
|
2 |
-
import
|
3 |
-
|
4 |
-
|
5 |
-
def classify_image(input_image):
|
6 |
-
# Download human-readable labels for ImageNet.
|
7 |
-
try:
|
8 |
-
response = requests.get("https://git.io/JJkYN")
|
9 |
-
response.raise_for_status() # Ensure the request was successful
|
10 |
-
labels = response.text.split("\n")
|
11 |
-
except Exception as e:
|
12 |
-
print("Error fetching labels:", e)
|
13 |
-
labels = ["Unknown"] * 1000 # Fallback in case the request fails
|
14 |
-
|
15 |
-
# Load the MobileNetV2 model
|
16 |
-
inception_net = keras.applications.MobileNetV2(
|
17 |
-
input_shape=(224, 224, 3),
|
18 |
-
alpha=1.0,
|
19 |
-
include_top=True,
|
20 |
-
weights="imagenet",
|
21 |
-
classes=1000,
|
22 |
-
classifier_activation="softmax"
|
23 |
-
)
|
24 |
-
|
25 |
-
# Resize the input image to the expected size
|
26 |
-
input_image = input_image.reshape((1, 224, 224, 3)) # Reshape for a single prediction
|
27 |
-
input_image = keras.applications.mobilenet_v2.preprocess_input(input_image)
|
28 |
-
|
29 |
-
# Perform prediction
|
30 |
-
prediction = inception_net.predict(input_image).flatten()
|
31 |
-
confidences = {labels[i]: float(prediction[i]) for i in range(len(labels))}
|
32 |
-
return confidences
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
|
|
|
|
|
|
|
|
44 |
demo.launch(share=True)
|
|
|
1 |
+
import requests
|
2 |
+
import tensorflow as tf
|
3 |
+
import gradio as gr
|
4 |
+
|
5 |
+
def classify_image(input_image):
|
6 |
+
# Download human-readable labels for ImageNet.
|
7 |
+
try:
|
8 |
+
response = requests.get("https://git.io/JJkYN")
|
9 |
+
response.raise_for_status() # Ensure the request was successful
|
10 |
+
labels = response.text.split("\n")
|
11 |
+
except Exception as e:
|
12 |
+
print("Error fetching labels:", e)
|
13 |
+
labels = ["Unknown"] * 1000 # Fallback in case the request fails
|
14 |
+
|
15 |
+
# Load the MobileNetV2 model
|
16 |
+
inception_net = keras.applications.MobileNetV2(
|
17 |
+
input_shape=(224, 224, 3),
|
18 |
+
alpha=1.0,
|
19 |
+
include_top=True,
|
20 |
+
weights="imagenet",
|
21 |
+
classes=1000,
|
22 |
+
classifier_activation="softmax"
|
23 |
+
)
|
24 |
+
|
25 |
+
# Resize the input image to the expected size
|
26 |
+
input_image = input_image.reshape((1, 224, 224, 3)) # Reshape for a single prediction
|
27 |
+
input_image = keras.applications.mobilenet_v2.preprocess_input(input_image)
|
28 |
+
|
29 |
+
# Perform prediction
|
30 |
+
prediction = inception_net.predict(input_image).flatten()
|
31 |
+
confidences = {labels[i]: float(prediction[i]) for i in range(len(labels))}
|
32 |
+
return confidences
|
33 |
+
|
34 |
+
image = gr.Image(interactive=True, label="Upload Image")
|
35 |
+
label = gr.Label(num_top_classes=3, label="Top Predictions")
|
36 |
+
|
37 |
+
demo = gr.Interface(
|
38 |
+
title="Image Classifier Keras",
|
39 |
+
fn= classify_image,
|
40 |
+
inputs= image,
|
41 |
+
outputs= label,
|
42 |
+
examples= [["./images/banana.jpg"], ["./images/car.jpg"], ["./images/guitar.jpg"], ["./images/lion.jpg"]], # Use valid URLs or local paths
|
43 |
+
theme= "default",
|
44 |
+
css= ".footer{display:none !important}"
|
45 |
+
)
|
46 |
+
|
47 |
+
if __name__ == "__main__":
|
48 |
demo.launch(share=True)
|