afrodreams / Home.py
Owos's picture
Update Home.py
2ec25b7
raw
history blame
5.38 kB
import neural_style
import streamlit as st
import os
import random
import numpy as np
from PIL import Image, ImageEnhance
from io import BytesIO
import matplotlib.pyplot as plt
import streamlit_ext as ste #for download button not to rerun
from huggingface_hub import upload_file
HF_TOKEN = os.environ.get("HF_TOKEN")
st.set_page_config(layout="wide")
st.markdown('<p class="font">Afrodreams.AI</p>', unsafe_allow_html=True)
st.subheader("This app takes in your image and styles it with a unique african art.")
#Create two columns with different width
col1, col2 = st.columns( [0.8, 0.2])
import time
with col1: # To display the header text using css style
st.markdown(""" <style> .font {
font-size:35px ; font-family: 'Cooper Black'; color: #FF9633;}
</style> """, unsafe_allow_html=True)
st.markdown('<p class="font">Upload your photo here...</p>', unsafe_allow_html=True)
#Add file uploader to allow users to upload photos
uploaded_file = st.file_uploader("", type=['jpg','png','jpeg'])
# add slider to side bar
style_weight = st.slider("Select Style Weight", min_value=10, max_value=100, value=12)
img_size_slider= st.select_slider(label= 'Seleet Output Quality Level',
options = ['Very Low', 'Low', 'Normal', 'High', 'Very High'],
value='Normal')
img_size_mapping = {'Very Low':128, 'Low':300, 'Normal':400, 'High':500, 'Very High':600}
def get_random_subset(list_, num_imgs):
return random.sample(list_, num_imgs)
def display_random_images(five_rand_imgs, display_type, size= (15, 6)):
fig = plt.figure(figsize=size)
fig.subplots_adjust(wspace=0.2)
for i in range(1, len(five_rand_imgs)+1):
ith_image = Image.open(five_rand_imgs[i-1])
ax = fig.add_subplot(1, 5, i)
ax.imshow(ith_image)
ax.set_title(f'{display_type} {i}')
plt.axis('off')
st.pyplot(fig)
path = 'stylesv2'
#expander for style selection
with st.expander("Expand to select style type"):
img_names = [os.path.join(path, img) for img in os.listdir(path)]
five_rand_imgs0 = get_random_subset(img_names, 5)
if 'selected_image' not in st.session_state:
st.session_state.selected_image = five_rand_imgs0
five_rand_imgs = st.session_state.selected_image
display_random_images(five_rand_imgs, 'Style')
chosen_style = st.selectbox(
'Select the style you want to use',
options = five_rand_imgs, format_func = lambda x: "Style " + str(five_rand_imgs.index(x) + 1),
key= 'expander1'
)
#put notificaation
with st.empty():
for seconds in range(5):
st.info('Please note that by using this app, you agree that your image be will be showcased on this app.')
time.sleep(1)
st.empty()
#Add 'before' and 'after' columns
if uploaded_file is not None:
image = Image.open(uploaded_file)
col1, col2 = st.columns( [0.5, 0.5])
with col1:
st.markdown('<p style="text-align: center;">Before</p>',unsafe_allow_html=True)
st.image(image,width=300)
with col2:
st.markdown('<p style="text-align: center;">After</p>',unsafe_allow_html=True)
# add a button
run = st.button('Generate Art')
my_bar = st.progress(0)
params = neural_style.TransferParams()
params.gpu = "c"
params.backend = "mkl"
params.image_size = img_size_mapping[img_size_slider]
params.content_image = uploaded_file
params.style_weight = style_weight
keep_style = False
if run==True:
# run image selection if keep style is false
if keep_style==False:
styles = os.listdir(path)
#params.style_image = path + '/' + random.choice(styles)
params.style_image = chosen_style
st.session_state.submitted = True
with st.spinner('Wait for it...'):
neural_style.transfer(params)
#display image when done.
with col2:
if 'submitted' in st.session_state:
result = Image.open('out.png')
st.image(result, width=300)
buf = BytesIO()
result.save(buf, format="png")
img_file_name = f"generated_samples/{str(len(os.listdir('generated_samples')))}.png"
_ = upload_file(path_or_fileobj = 'out.png',
path_in_repo = img_file_name,
repo_id='AfrodreamsAI/afrodreams',
repo_type='space',
token=HF_TOKEN
)
byte_im = buf.getvalue()
run = ste.download_button(button_text="Download Image", data=byte_im, download_filename='afrodreams.jpg', mime="image/png")
if run==True:
# selectiuing random iamges to be displayed
img_names = [os.path.join('generated_samples', img) for img in os.listdir('generated_samples')]
five_rand_imgs1 = get_random_subset(img_names, 5)
st.subheader('\n\n\n\n\n\n\n\n Examples of some Generate Images')
display_random_images(five_rand_imgs1, 'Generate image', size=(20, 15))