Spaces:
Runtime error
Runtime error
import base64 | |
from io import BytesIO | |
from fastapi import FastAPI, HTTPException | |
from pydantic import BaseModel | |
from transformers import AutoModelForCausalLM, AutoProcessor | |
import torch | |
from PIL import Image | |
import subprocess | |
# Install flash-attn | |
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) | |
app = FastAPI() | |
models = { | |
"microsoft/Phi-3.5-vision-instruct": AutoModelForCausalLM.from_pretrained( | |
"microsoft/Phi-3.5-vision-instruct", | |
trust_remote_code=True, | |
torch_dtype="auto", | |
attn_implementation="flash_attention_2" | |
).cuda().eval() | |
} | |
processors = { | |
"microsoft/Phi-3.5-vision-instruct": AutoProcessor.from_pretrained( | |
"microsoft/Phi-3.5-vision-instruct", | |
trust_remote_code=True | |
) | |
} | |
class InputData(BaseModel): | |
image: str | |
text_input: str | |
model_id: str = "microsoft/Phi-3.5-vision-instruct" | |
async def run_example(input_data: InputData): | |
try: | |
model = models[input_data.model_id] | |
processor = processors[input_data.model_id] | |
# Decode base64 image | |
image_data = base64.b64decode(input_data.image) | |
image = Image.open(BytesIO(image_data)).convert("RGB") | |
user_prompt = '<|user|>\n' | |
assistant_prompt = '<|assistant|>\n' | |
prompt_suffix = "<|end|>\n" | |
prompt = f"{user_prompt}<|image_1|>\n{input_data.text_input}{prompt_suffix}{assistant_prompt}" | |
inputs = processor(prompt, image, return_tensors="pt").to("cuda:0") | |
generate_ids = model.generate( | |
**inputs, | |
max_new_tokens=1000, | |
eos_token_id=processor.tokenizer.eos_token_id, | |
) | |
generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:] | |
response = processor.batch_decode( | |
generate_ids, | |
skip_special_tokens=True, | |
clean_up_tokenization_spaces=False | |
)[0] | |
return {"response": response} | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=str(e)) |