Spaces:
Runtime error
Runtime error
import logging | |
import math | |
import time | |
import base64 | |
import io | |
from typing import Dict, Any | |
from functools import wraps | |
from fastapi import FastAPI, Depends, HTTPException | |
from fastapi.encoders import jsonable_encoder | |
from pydantic import BaseModel | |
import jax.numpy as jnp | |
import numpy as np | |
from transformers.pipelines.audio_utils import ffmpeg_read | |
from whisper_jax import FlaxWhisperPipline | |
app = FastAPI(title="Whisper JAX: The Fastest Whisper API ⚡️") | |
logger = logging.getLogger("whisper-jax-app") | |
logger.setLevel(logging.DEBUG) | |
ch = logging.StreamHandler() | |
ch.setLevel(logging.DEBUG) | |
formatter = logging.Formatter("%(asctime)s;%(levelname)s;%(message)s", "%Y-%m-%d %H:%M:%S") | |
ch.setFormatter(formatter) | |
logger.addHandler(ch) | |
checkpoint = "openai/whisper-large-v3" | |
BATCH_SIZE = 32 | |
CHUNK_LENGTH_S = 30 | |
NUM_PROC = 32 | |
FILE_LIMIT_MB = 10000 | |
pipeline = FlaxWhisperPipline(checkpoint, dtype=jnp.bfloat16, batch_size=BATCH_SIZE) | |
stride_length_s = CHUNK_LENGTH_S / 6 | |
chunk_len = round(CHUNK_LENGTH_S * pipeline.feature_extractor.sampling_rate) | |
stride_left = stride_right = round(stride_length_s * pipeline.feature_extractor.sampling_rate) | |
step = chunk_len - stride_left - stride_right | |
# do a pre-compile step so that the first user to use the demo isn't hit with a long transcription time | |
logger.debug("Compiling forward call...") | |
start = time.time() | |
random_inputs = { | |
"input_features": np.ones( | |
(BATCH_SIZE, pipeline.model.config.num_mel_bins, 2 * pipeline.model.config.max_source_positions) | |
) | |
} | |
random_timestamps = pipeline.forward(random_inputs, batch_size=BATCH_SIZE, return_timestamps=True) | |
compile_time = time.time() - start | |
logger.debug(f"Compiled in {compile_time}s") | |
class TranscribeAudioRequest(BaseModel): | |
audio_base64: str | |
task: str = "transcribe" | |
return_timestamps: bool = False | |
def timeit(func): | |
async def wrapper(*args, **kwargs): | |
start_time = time.time() | |
result = await func(*args, **kwargs) | |
end_time = time.time() | |
execution_time = end_time - start_time | |
if isinstance(result, dict): | |
result['total_execution_time'] = execution_time | |
else: | |
result = {'result': result, 'total_execution_time': execution_time} | |
return result | |
return wrapper | |
async def transcribe_chunked_audio( | |
request: TranscribeAudioRequest | |
) -> Dict[str, Any]: | |
logger.debug("Starting transcribe_chunked_audio function") | |
logger.debug(f"Received parameters - task: {request.task}, return_timestamps: {request.return_timestamps}") | |
try: | |
# Decode base64 audio data | |
audio_data = base64.b64decode(request.audio_base64) | |
file_size = len(audio_data) | |
file_size_mb = file_size / (1024 * 1024) | |
logger.debug(f"Decoded audio data size: {file_size} bytes ({file_size_mb:.2f}MB)") | |
except Exception as e: | |
logger.error(f"Error decoding base64 audio data: {str(e)}", exc_info=True) | |
raise HTTPException(status_code=400, detail=f"Error decoding base64 audio data: {str(e)}") | |
if file_size_mb > FILE_LIMIT_MB: | |
logger.warning(f"Max file size exceeded: {file_size_mb:.2f}MB > {FILE_LIMIT_MB}MB") | |
raise HTTPException(status_code=400, detail=f"File size exceeds file size limit. Got file of size {file_size_mb:.2f}MB for a limit of {FILE_LIMIT_MB}MB.") | |
try: | |
logger.debug("Performing ffmpeg read on audio data") | |
inputs = ffmpeg_read(audio_data, pipeline.feature_extractor.sampling_rate) | |
inputs = {"array": inputs, "sampling_rate": pipeline.feature_extractor.sampling_rate} | |
logger.debug("ffmpeg read completed successfully") | |
except Exception as e: | |
logger.error(f"Error in ffmpeg read: {str(e)}", exc_info=True) | |
raise HTTPException(status_code=500, detail=f"Error processing audio data: {str(e)}") | |
logger.debug("Calling tqdm_generate to transcribe audio") | |
try: | |
text, runtime, timing_info = tqdm_generate(inputs, task=request.task, return_timestamps=request.return_timestamps) | |
logger.debug(f"Transcription completed. Runtime: {runtime:.2f}s") | |
except Exception as e: | |
logger.error(f"Error in tqdm_generate: {str(e)}", exc_info=True) | |
raise HTTPException(status_code=500, detail=f"Error transcribing audio: {str(e)}") | |
logger.debug("Transcribe_chunked_audio function completed successfully") | |
return jsonable_encoder({ | |
"text": text, | |
"runtime": runtime, | |
"timing_info": timing_info | |
}) | |
def tqdm_generate(inputs: dict, task: str, return_timestamps: bool): | |
start_time = time.time() | |
logger.debug(f"Starting tqdm_generate - task: {task}, return_timestamps: {return_timestamps}") | |
inputs_len = inputs["array"].shape[0] | |
logger.debug(f"Input array length: {inputs_len}") | |
all_chunk_start_idx = np.arange(0, inputs_len, step) | |
num_samples = len(all_chunk_start_idx) | |
num_batches = math.ceil(num_samples / BATCH_SIZE) | |
logger.debug(f"Number of samples: {num_samples}, Number of batches: {num_batches}") | |
logger.debug("Preprocessing audio for inference") | |
try: | |
dataloader = pipeline.preprocess_batch(inputs, chunk_length_s=CHUNK_LENGTH_S, batch_size=BATCH_SIZE) | |
logger.debug("Preprocessing completed successfully") | |
except Exception as e: | |
logger.error(f"Error in preprocessing: {str(e)}", exc_info=True) | |
raise | |
model_outputs = [] | |
transcription_start_time = time.time() | |
logger.debug("Starting transcription...") | |
try: | |
for i, batch in enumerate(dataloader): | |
logger.debug(f"Processing batch {i+1}/{num_batches} with {len(batch)} samples") | |
batch_output = pipeline.forward(batch, batch_size=BATCH_SIZE, task=task, return_timestamps=True) | |
model_outputs.append(batch_output) | |
logger.debug(f"Batch {i+1} processed successfully") | |
except Exception as e: | |
logger.error(f"Error during batch processing: {str(e)}", exc_info=True) | |
raise | |
transcription_runtime = time.time() - transcription_start_time | |
logger.debug(f"Transcription completed in {transcription_runtime:.2f}s") | |
logger.debug("Post-processing transcription results") | |
try: | |
post_processed = pipeline.postprocess(model_outputs, return_timestamps=True) | |
logger.debug("Post-processing completed successfully") | |
except Exception as e: | |
logger.error(f"Error in post-processing: {str(e)}", exc_info=True) | |
raise | |
text = post_processed["text"] | |
if return_timestamps: | |
timestamps = post_processed.get("chunks") | |
timestamps = [ | |
f"[{format_timestamp(chunk['timestamp'][0])} -> {format_timestamp(chunk['timestamp'][1])}] {chunk['text']}" | |
for chunk in timestamps | |
] | |
text = "\n".join(str(feature) for feature in timestamps) | |
total_processing_time = time.time() - start_time | |
logger.debug("tqdm_generate function completed successfully") | |
return text, transcription_runtime, { | |
"transcription_time": transcription_runtime, | |
"total_processing_time": total_processing_time | |
} | |
def format_timestamp(seconds: float, always_include_hours: bool = False, decimal_marker: str = "."): | |
if seconds is not None: | |
milliseconds = round(seconds * 1000.0) | |
hours = milliseconds // 3_600_000 | |
milliseconds -= hours * 3_600_000 | |
minutes = milliseconds // 60_000 | |
milliseconds -= minutes * 60_000 | |
seconds = milliseconds // 1_000 | |
milliseconds -= seconds * 1_000 | |
hours_marker = f"{hours:02d}:" if always_include_hours or hours > 0 else "" | |
return f"{hours_marker}{minutes:02d}:{seconds:02d}{decimal_marker}{milliseconds:03d}" | |
else: | |
# we have a malformed timestamp so just return it as is | |
return seconds |