Spaces:
Runtime error
Runtime error
import logging | |
import math | |
import os | |
import tempfile | |
import time | |
import yt_dlp as youtube_dl | |
from fastapi import FastAPI, UploadFile, Form, HTTPException | |
from fastapi.responses import HTMLResponse | |
import jax.numpy as jnp | |
import numpy as np | |
from transformers.models.whisper.tokenization_whisper import TO_LANGUAGE_CODE | |
from transformers.pipelines.audio_utils import ffmpeg_read | |
from whisper_jax import FlaxWhisperPipline | |
app = FastAPI(title="Whisper JAX: The Fastest Whisper API ⚡️") | |
logger = logging.getLogger("whisper-jax-app") | |
logger.setLevel(logging.DEBUG) | |
ch = logging.StreamHandler() | |
ch.setLevel(logging.DEBUG) | |
formatter = logging.Formatter("%(asctime)s;%(levelname)s;%(message)s", "%Y-%m-%d %H:%M:%S") | |
ch.setFormatter(formatter) | |
logger.addHandler(ch) | |
checkpoint = "openai/whisper-large-v3" | |
BATCH_SIZE = 32 | |
CHUNK_LENGTH_S = 30 | |
NUM_PROC = 32 | |
FILE_LIMIT_MB = 10000 | |
YT_LENGTH_LIMIT_S = 15000 # limit to 2 hour YouTube files | |
pipeline = FlaxWhisperPipline(checkpoint, dtype=jnp.bfloat16, batch_size=BATCH_SIZE) | |
stride_length_s = CHUNK_LENGTH_S / 6 | |
chunk_len = round(CHUNK_LENGTH_S * pipeline.feature_extractor.sampling_rate) | |
stride_left = stride_right = round(stride_length_s * pipeline.feature_extractor.sampling_rate) | |
step = chunk_len - stride_left - stride_right | |
# do a pre-compile step so that the first user to use the demo isn't hit with a long transcription time | |
logger.debug("Compiling forward call...") | |
start = time.time() | |
random_inputs = { | |
"input_features": np.ones( | |
(BATCH_SIZE, pipeline.model.config.num_mel_bins, 2 * pipeline.model.config.max_source_positions) | |
) | |
} | |
random_timestamps = pipeline.forward(random_inputs, batch_size=BATCH_SIZE, return_timestamps=True) | |
compile_time = time.time() - start | |
logger.debug(f"Compiled in {compile_time}s") | |
async def transcribe_chunked_audio(audio_file: UploadFile, task: str = "transcribe", return_timestamps: bool = False): | |
logger.debug("Starting transcribe_chunked_audio function") | |
logger.debug(f"Received parameters - task: {task}, return_timestamps: {return_timestamps}") | |
logger.debug("Checking for audio file...") | |
if not audio_file: | |
logger.warning("No audio file") | |
raise HTTPException(status_code=400, detail="No audio file submitted!") | |
logger.debug(f"Audio file received: {audio_file.filename}") | |
try: | |
# Read the file content | |
file_content = await audio_file.read() | |
file_size = len(file_content) | |
file_size_mb = file_size / (1024 * 1024) | |
logger.debug(f"File size: {file_size} bytes ({file_size_mb:.2f}MB)") | |
except Exception as e: | |
logger.error(f"Error reading file: {str(e)}", exc_info=True) | |
raise HTTPException(status_code=500, detail=f"Error reading file: {str(e)}") | |
if file_size_mb > FILE_LIMIT_MB: | |
logger.warning(f"Max file size exceeded: {file_size_mb:.2f}MB > {FILE_LIMIT_MB}MB") | |
raise HTTPException(status_code=400, detail=f"File size exceeds file size limit. Got file of size {file_size_mb:.2f}MB for a limit of {FILE_LIMIT_MB}MB.") | |
try: | |
logger.debug("Performing ffmpeg read on audio file") | |
inputs = ffmpeg_read(file_content, pipeline.feature_extractor.sampling_rate) | |
inputs = {"array": inputs, "sampling_rate": pipeline.feature_extractor.sampling_rate} | |
logger.debug("ffmpeg read completed successfully") | |
except Exception as e: | |
logger.error(f"Error in ffmpeg read: {str(e)}", exc_info=True) | |
raise HTTPException(status_code=500, detail=f"Error processing audio file: {str(e)}") | |
logger.debug("Calling tqdm_generate to transcribe audio") | |
try: | |
text, runtime = tqdm_generate(inputs, task=task, return_timestamps=return_timestamps) | |
logger.debug(f"Transcription completed. Runtime: {runtime:.2f}s") | |
except Exception as e: | |
logger.error(f"Error in tqdm_generate: {str(e)}", exc_info=True) | |
raise HTTPException(status_code=500, detail=f"Error transcribing audio: {str(e)}") | |
logger.debug("Transcribe_chunked_audio function completed successfully") | |
return {"text": text, "runtime": runtime} | |
async def transcribe_youtube(yt_url: str = Form(...), task: str = "transcribe", return_timestamps: bool = False): | |
logger.debug("Loading YouTube file...") | |
try: | |
html_embed_str = _return_yt_html_embed(yt_url) | |
except Exception as e: | |
logger.error("Error generating YouTube HTML embed:", exc_info=True) | |
raise HTTPException(status_code=500, detail="Error generating YouTube HTML embed") | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
filepath = os.path.join(tmpdirname, "video.mp4") | |
try: | |
logger.debug("Downloading YouTube audio...") | |
download_yt_audio(yt_url, filepath) | |
except Exception as e: | |
logger.error("Error downloading YouTube audio:", exc_info=True) | |
raise HTTPException(status_code=500, detail="Error downloading YouTube audio") | |
try: | |
logger.debug(f"Opening downloaded audio file: {filepath}") | |
with open(filepath, "rb") as f: | |
inputs = f.read() | |
except Exception as e: | |
logger.error("Error reading downloaded audio file:", exc_info=True) | |
raise HTTPException(status_code=500, detail="Error reading downloaded audio file") | |
inputs = ffmpeg_read(inputs, pipeline.feature_extractor.sampling_rate) | |
inputs = {"array": inputs, "sampling_rate": pipeline.feature_extractor.sampling_rate} | |
logger.debug("Done loading YouTube file") | |
try: | |
logger.debug("Calling tqdm_generate to transcribe YouTube audio") | |
text, runtime = tqdm_generate(inputs, task=task, return_timestamps=return_timestamps) | |
except Exception as e: | |
logger.error("Error transcribing YouTube audio:", exc_info=True) | |
raise HTTPException(status_code=500, detail="Error transcribing YouTube audio") | |
return {"html_embed": html_embed_str, "text": text, "runtime": runtime} | |
def tqdm_generate(inputs: dict, task: str, return_timestamps: bool): | |
logger.debug(f"Starting tqdm_generate - task: {task}, return_timestamps: {return_timestamps}") | |
inputs_len = inputs["array"].shape[0] | |
logger.debug(f"Input array length: {inputs_len}") | |
all_chunk_start_idx = np.arange(0, inputs_len, step) | |
num_samples = len(all_chunk_start_idx) | |
num_batches = math.ceil(num_samples / BATCH_SIZE) | |
logger.debug(f"Number of samples: {num_samples}, Number of batches: {num_batches}") | |
logger.debug("Preprocessing audio for inference") | |
try: | |
dataloader = pipeline.preprocess_batch(inputs, chunk_length_s=CHUNK_LENGTH_S, batch_size=BATCH_SIZE) | |
logger.debug("Preprocessing completed successfully") | |
except Exception as e: | |
logger.error(f"Error in preprocessing: {str(e)}", exc_info=True) | |
raise | |
model_outputs = [] | |
start_time = time.time() | |
logger.debug("Starting transcription...") | |
try: | |
for i, batch in enumerate(dataloader): | |
logger.debug(f"Processing batch {i+1}/{num_batches} with {len(batch)} samples") | |
batch_output = pipeline.forward(batch, batch_size=BATCH_SIZE, task=task, return_timestamps=True) | |
model_outputs.append(batch_output) | |
logger.debug(f"Batch {i+1} processed successfully") | |
except Exception as e: | |
logger.error(f"Error during batch processing: {str(e)}", exc_info=True) | |
raise | |
runtime = time.time() - start_time | |
logger.debug(f"Transcription completed in {runtime:.2f}s") | |
logger.debug("Post-processing transcription results") | |
try: | |
post_processed = pipeline.postprocess(model_outputs, return_timestamps=True) | |
logger.debug("Post-processing completed successfully") | |
except Exception as e: | |
logger.error(f"Error in post-processing: {str(e)}", exc_info=True) | |
raise | |
text = post_processed["text"] | |
if return_timestamps: | |
timestamps = post_processed.get("chunks") | |
timestamps = [ | |
f"[{format_timestamp(chunk['timestamp'][0])} -> {format_timestamp(chunk['timestamp'][1])}] {chunk['text']}" | |
for chunk in timestamps | |
] | |
text = "\n".join(str(feature) for feature in timestamps) | |
logger.debug("tqdm_generate function completed successfully") | |
return text, runtime | |
def _return_yt_html_embed(yt_url): | |
video_id = yt_url.split("?v=")[-1] | |
HTML_str = ( | |
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>' | |
" </center>" | |
) | |
return HTML_str | |
def download_yt_audio(yt_url, filename): | |
info_loader = youtube_dl.YoutubeDL() | |
try: | |
logger.debug(f"Extracting info for YouTube URL: {yt_url}") | |
info = info_loader.extract_info(yt_url, download=False) | |
except youtube_dl.utils.DownloadError as err: | |
logger.error("Error extracting YouTube info:", exc_info=True) | |
raise HTTPException(status_code=400, detail=str(err)) | |
file_length = info["duration_string"] | |
file_h_m_s = file_length.split(":") | |
file_h_m_s = [int(sub_length) for sub_length in file_h_m_s] | |
if len(file_h_m_s) == 1: | |
file_h_m_s.insert(0, 0) | |
if len(file_h_m_s) == 2: | |
file_h_m_s.insert(0, 0) | |
file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2] | |
if file_length_s > YT_LENGTH_LIMIT_S: | |
yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S)) | |
file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s)) | |
raise HTTPException(status_code=400, detail=f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.") | |
ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"} | |
with youtube_dl.YoutubeDL(ydl_opts) as ydl: | |
try: | |
logger.debug(f"Downloading YouTube audio to {filename}") | |
ydl.download([yt_url]) | |
except youtube_dl.utils.ExtractorError as err: | |
logger.error("Error downloading YouTube audio:", exc_info=True) | |
raise HTTPException(status_code=400, detail=str(err)) | |
def format_timestamp(seconds: float, always_include_hours: bool = False, decimal_marker: str = "."): | |
if seconds is not None: | |
milliseconds = round(seconds * 1000.0) | |
hours = milliseconds // 3_600_000 | |
milliseconds -= hours * 3_600_000 | |
minutes = milliseconds // 60_000 | |
milliseconds -= minutes * 60_000 | |
seconds = milliseconds // 1_000 | |
milliseconds -= seconds * 1_000 | |
hours_marker = f"{hours:02d}:" if always_include_hours or hours > 0 else "" | |
return f"{hours_marker}{minutes:02d}:{seconds:02d}{decimal_marker}{milliseconds:03d}" | |
else: | |
# we have a malformed timestamp so just return it as is | |
return seconds |