stts1 / app.py
Afrinetwork7's picture
Rename router.py to app.py
b8f1701 verified
raw
history blame
7.68 kB
import base64
import logging
import math
import tempfile
import time
from typing import Optional, Tuple
import fastapi
import jax.numpy as jnp
import numpy as np
import yt_dlp as youtube_dl
from jax.experimental.compilation_cache import compilation_cache as cc
from pydantic import BaseModel
from transformers.models.whisper.tokenization_whisper import TO_LANGUAGE_CODE
from transformers.pipelines.audio_utils import ffmpeg_read
from whisper_jax import FlaxWhisperPipline
cc.initialize_cache("./jax_cache")
checkpoint = "openai/whisper-large-v3"
BATCH_SIZE = 32
CHUNK_LENGTH_S = 30
NUM_PROC = 32
FILE_LIMIT_MB = 10000
YT_LENGTH_LIMIT_S = 15000 # limit to 2 hour YouTube files
logger = logging.getLogger("whisper-jax-app")
logger.setLevel(logging.INFO)
ch = logging.StreamHandler()
ch.setLevel(logging.INFO)
formatter = logging.Formatter("%(asctime)s;%(levelname)s;%(message)s", "%Y-%m-%d %H:%M:%S")
ch.setFormatter(formatter)
logger.addHandler(ch)
pipeline = FlaxWhisperPipline(checkpoint, dtype=jnp.bfloat16, batch_size=BATCH_SIZE)
stride_length_s = CHUNK_LENGTH_S / 6
chunk_len = round(CHUNK_LENGTH_S * pipeline.feature_extractor.sampling_rate)
stride_left = stride_right = round(stride_length_s * pipeline.feature_extractor.sampling_rate)
step = chunk_len - stride_left - stride_right
# do a pre-compile step so that the first user to use the demo isn't hit with a long transcription time
logger.info("compiling forward call...")
start = time.time()
random_inputs = {
"input_features": np.ones(
(BATCH_SIZE, pipeline.model.config.num_mel_bins, 2 * pipeline.model.config.max_source_positions)
)
}
random_timestamps = pipeline.forward(random_inputs, batch_size=BATCH_SIZE, return_timestamps=True)
compile_time = time.time() - start
logger.info(f"compiled in {compile_time}s")
app = fastapi.FastAPI()
class TranscriptionRequest(BaseModel):
audio_file: str
task: str = "transcribe"
return_timestamps: bool = False
class TranscriptionResponse(BaseModel):
transcription: str
runtime: float
@app.post("/transcribe", response_model=TranscriptionResponse)
def transcribe_audio(request: TranscriptionRequest):
logger.info("loading audio file...")
if not request.audio_file:
logger.warning("No audio file")
raise fastapi.HTTPException(status_code=400, detail="No audio file submitted!")
audio_bytes = base64.b64decode(request.audio_file)
file_size_mb = len(audio_bytes) / (1024 * 1024)
if file_size_mb > FILE_LIMIT_MB:
logger.warning("Max file size exceeded")
raise fastapi.HTTPException(
status_code=400,
detail=f"File size exceeds file size limit. Got file of size {file_size_mb:.2f}MB for a limit of {FILE_LIMIT_MB}MB.",
)
inputs = ffmpeg_read(audio_bytes, pipeline.feature_extractor.sampling_rate)
inputs = {"array": inputs, "sampling_rate": pipeline.feature_extractor.sampling_rate}
logger.info("done loading")
text, runtime = _tqdm_generate(inputs, task=request.task, return_timestamps=request.return_timestamps)
return TranscriptionResponse(transcription=text, runtime=runtime)
@app.post("/transcribe_youtube")
def transcribe_youtube(
yt_url: str, task: str = "transcribe", return_timestamps: bool = False
) -> Tuple[str, str, float]:
logger.info("loading youtube file...")
html_embed_str = _return_yt_html_embed(yt_url)
with tempfile.TemporaryDirectory() as tmpdirname:
filepath = os.path.join(tmpdirname, "video.mp4")
_download_yt_audio(yt_url, filepath)
with open(filepath, "rb") as f:
inputs = f.read()
inputs = ffmpeg_read(inputs, pipeline.feature_extractor.sampling_rate)
inputs = {"array": inputs, "sampling_rate": pipeline.feature_extractor.sampling_rate}
logger.info("done loading...")
text, runtime = _tqdm_generate(inputs, task=task, return_timestamps=return_timestamps)
return html_embed_str, text, runtime
def _tqdm_generate(inputs: dict, task: str, return_timestamps: bool, progress: Optional[fastapi.ProgressBar] = None):
inputs_len = inputs["array"].shape[0]
all_chunk_start_idx = np.arange(0, inputs_len, step)
num_samples = len(all_chunk_start_idx)
num_batches = math.ceil(num_samples / BATCH_SIZE)
dataloader = pipeline.preprocess_batch(inputs, chunk_length_s=CHUNK_LENGTH_S, batch_size=BATCH_SIZE)
model_outputs = []
start_time = time.time()
logger.info("transcribing...")
# iterate over our chunked audio samples - always predict timestamps to reduce hallucinations
for batch, _ in zip(dataloader, range(num_batches)):
model_outputs.append(pipeline.forward(batch, batch_size=BATCH_SIZE, task=task, return_timestamps=True))
runtime = time.time() - start_time
logger.info("done transcription")
logger.info("post-processing...")
post_processed = pipeline.postprocess(model_outputs, return_timestamps=True)
text = post_processed["text"]
if return_timestamps:
timestamps = post_processed.get("chunks")
timestamps = [
f"[{_format_timestamp(chunk['timestamp'][0])} -> {_format_timestamp(chunk['timestamp'][1])}] {chunk['text']}"
for chunk in timestamps
]
text = "\n".join(str(feature) for feature in timestamps)
logger.info("done post-processing")
return text, runtime
def _return_yt_html_embed(yt_url: str) -> str:
video_id = yt_url.split("?v=")[-1]
HTML_str = (
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
" </center>"
)
return HTML_str
def _download_yt_audio(yt_url: str, filename: str):
info_loader = youtube_dl.YoutubeDL()
try:
info = info_loader.extract_info(yt_url, download=False)
except youtube_dl.utils.DownloadError as err:
raise fastapi.HTTPException(status_code=400, detail=str(err))
file_length = info["duration_string"]
file_h_m_s = file_length.split(":")
file_h_m_s = [int(sub_length) for sub_length in file_h_m_s]
if len(file_h_m_s) == 1:
file_h_m_s.insert(0, 0)
if len(file_h_m_s) == 2:
file_h_m_s.insert(0, 0)
file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2]
if file_length_s > YT_LENGTH_LIMIT_S:
yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S))
file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s))
raise fastapi.HTTPException(
status_code=400,
detail=f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.",
)
ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"}
with youtube_dl.YoutubeDL(ydl_opts) as ydl:
try:
ydl.download([yt_url])
except youtube_dl.utils.ExtractorError as err:
raise fastapi.HTTPException(status_code=400, detail=str(err))
def _format_timestamp(seconds: float, always_include_hours: bool = False, decimal_marker: str = "."):
if seconds is not None:
milliseconds = round(seconds * 1000.0)
hours = milliseconds // 3_600_000
milliseconds -= hours * 3_600_000
minutes = milliseconds // 60_000
milliseconds -= minutes * 60_000
seconds = milliseconds // 1_000
milliseconds -= seconds * 1_000
hours_marker = f"{hours:02d}:" if always_include_hours or hours > 0 else ""
return f"{hours_marker}{minutes:02d}:{seconds:02d}{decimal_marker}{milliseconds:03d}"
else:
# we have a malformed timestamp so just return it as is
return seconds