Spaces:
Sleeping
Sleeping
from fastapi import FastAPI, HTTPException | |
from fastapi.responses import JSONResponse, FileResponse | |
from pydantic import BaseModel | |
import numpy as np | |
import io | |
import soundfile as sf | |
import base64 | |
import logging | |
import torch | |
import librosa | |
from transformers import Wav2Vec2ForCTC, AutoProcessor | |
from pathlib import Path | |
# Import functions from other modules | |
from asr import transcribe, ASR_LANGUAGES | |
from tts import synthesize, TTS_LANGUAGES | |
from lid import identify | |
# Configure logging | |
logging.basicConfig(level=logging.INFO) | |
logger = logging.getLogger(__name__) | |
app = FastAPI(title="MMS: Scaling Speech Technology to 1000+ languages") | |
# Define request models | |
class AudioRequest(BaseModel): | |
audio: str # Base64 encoded audio data | |
language: str | |
class TTSRequest(BaseModel): | |
text: str | |
language: str | |
speed: float | |
async def transcribe_audio(request: AudioRequest): | |
try: | |
audio_bytes = base64.b64decode(request.audio) | |
audio_array, sample_rate = sf.read(io.BytesIO(audio_bytes)) | |
# Convert to mono if stereo | |
if len(audio_array.shape) > 1: | |
audio_array = audio_array.mean(axis=1) | |
result = transcribe(audio_array, request.language) | |
return JSONResponse(content={"transcription": result}) | |
except Exception as e: | |
logger.error(f"Error in transcribe_audio: {str(e)}") | |
raise HTTPException(status_code=500, detail=f"An error occurred: {str(e)}") | |
async def synthesize_speech(request: TTSRequest): | |
try: | |
audio, filtered_text = synthesize(request.text, request.language, request.speed) | |
# Convert numpy array to bytes | |
buffer = io.BytesIO() | |
sf.write(buffer, audio, 22050, format='wav') | |
buffer.seek(0) | |
return FileResponse( | |
buffer, | |
media_type="audio/wav", | |
headers={"Content-Disposition": "attachment; filename=synthesized_audio.wav"} | |
) | |
except Exception as e: | |
logger.error(f"Error in synthesize_speech: {str(e)}") | |
raise HTTPException(status_code=500, detail=f"An error occurred: {str(e)}") | |
async def identify_language(request: AudioRequest): | |
try: | |
audio_bytes = base64.b64decode(request.audio) | |
audio_array, sample_rate = sf.read(io.BytesIO(audio_bytes)) | |
result = identify(audio_array) | |
return JSONResponse(content={"language_identification": result}) | |
except Exception as e: | |
logger.error(f"Error in identify_language: {str(e)}") | |
raise HTTPException(status_code=500, detail=f"An error occurred: {str(e)}") | |
async def get_asr_languages(): | |
try: | |
return JSONResponse(content=ASR_LANGUAGES) | |
except Exception as e: | |
logger.error(f"Error in get_asr_languages: {str(e)}") | |
raise HTTPException(status_code=500, detail=f"An error occurred: {str(e)}") | |
async def get_tts_languages(): | |
try: | |
return JSONResponse(content=TTS_LANGUAGES) | |
except Exception as e: | |
logger.error(f"Error in get_tts_languages: {str(e)}") | |
raise HTTPException(status_code=500, detail=f"An error occurred: {str(e)}") | |