capradeepgujaran
commited on
Commit
•
9bf83e0
1
Parent(s):
f2ae346
Update app.py
Browse files
app.py
CHANGED
@@ -7,15 +7,17 @@ from PIL import Image as PILImage
|
|
7 |
import io
|
8 |
import os
|
9 |
import base64
|
|
|
10 |
|
11 |
def create_monitor_interface():
|
12 |
api_key = os.getenv("GROQ_API_KEY")
|
13 |
|
14 |
class SafetyMonitor:
|
15 |
def __init__(self):
|
16 |
-
self.client = Groq()
|
17 |
self.model_name = "llama-3.2-90b-vision-preview"
|
18 |
-
self.max_image_size = (
|
|
|
19 |
|
20 |
def resize_image(self, image):
|
21 |
height, width = image.shape[:2]
|
@@ -47,7 +49,7 @@ def create_monitor_interface():
|
|
47 |
buffered = io.BytesIO()
|
48 |
frame_pil.save(buffered,
|
49 |
format="JPEG",
|
50 |
-
quality=
|
51 |
optimize=True)
|
52 |
img_base64 = base64.b64encode(buffered.getvalue()).decode('utf-8')
|
53 |
image_url = f"data:image/jpeg;base64,{img_base64}"
|
@@ -61,7 +63,9 @@ def create_monitor_interface():
|
|
61 |
"content": [
|
62 |
{
|
63 |
"type": "text",
|
64 |
-
"text": "Analyze this workplace
|
|
|
|
|
65 |
},
|
66 |
{
|
67 |
"type": "image_url",
|
@@ -77,7 +81,7 @@ def create_monitor_interface():
|
|
77 |
}
|
78 |
],
|
79 |
temperature=0.1,
|
80 |
-
max_tokens=
|
81 |
top_p=1,
|
82 |
stream=False,
|
83 |
stop=None
|
@@ -87,30 +91,59 @@ def create_monitor_interface():
|
|
87 |
print(f"Detailed error: {str(e)}")
|
88 |
return f"Analysis Error: {str(e)}"
|
89 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
def process_frame(self, frame: np.ndarray) -> tuple[np.ndarray, str]:
|
91 |
if frame is None:
|
92 |
return None, "No image provided"
|
93 |
|
94 |
analysis = self.analyze_frame(frame)
|
95 |
-
display_frame = frame.copy()
|
96 |
|
97 |
-
#
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
|
103 |
-
#
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
cv2.putText(display_frame, line[:80], (10, y_position),
|
108 |
-
cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 0), 2)
|
109 |
-
y_position += 30
|
110 |
-
if y_position >= 90:
|
111 |
-
break
|
112 |
-
|
113 |
-
return display_frame, analysis
|
114 |
|
115 |
# Create the main interface
|
116 |
monitor = SafetyMonitor()
|
@@ -120,9 +153,9 @@ def create_monitor_interface():
|
|
120 |
|
121 |
with gr.Row():
|
122 |
input_image = gr.Image(label="Upload Image")
|
123 |
-
output_image = gr.Image(label="Results")
|
124 |
|
125 |
-
analysis_text = gr.Textbox(label="Analysis", lines=5)
|
126 |
|
127 |
def analyze_image(image):
|
128 |
if image is None:
|
|
|
7 |
import io
|
8 |
import os
|
9 |
import base64
|
10 |
+
import random
|
11 |
|
12 |
def create_monitor_interface():
|
13 |
api_key = os.getenv("GROQ_API_KEY")
|
14 |
|
15 |
class SafetyMonitor:
|
16 |
def __init__(self):
|
17 |
+
self.client = Groq()
|
18 |
self.model_name = "llama-3.2-90b-vision-preview"
|
19 |
+
self.max_image_size = (640, 640) # Increased size for better visibility
|
20 |
+
self.colors = [(255, 0, 0), (0, 255, 0), (0, 0, 255), (255, 255, 0), (255, 0, 255)]
|
21 |
|
22 |
def resize_image(self, image):
|
23 |
height, width = image.shape[:2]
|
|
|
49 |
buffered = io.BytesIO()
|
50 |
frame_pil.save(buffered,
|
51 |
format="JPEG",
|
52 |
+
quality=30,
|
53 |
optimize=True)
|
54 |
img_base64 = base64.b64encode(buffered.getvalue()).decode('utf-8')
|
55 |
image_url = f"data:image/jpeg;base64,{img_base64}"
|
|
|
63 |
"content": [
|
64 |
{
|
65 |
"type": "text",
|
66 |
+
"text": """Analyze this workplace image and describe each safety concern in this format:
|
67 |
+
- <location>Description</location>
|
68 |
+
Use one line per issue, starting with a dash and location in tags."""
|
69 |
},
|
70 |
{
|
71 |
"type": "image_url",
|
|
|
81 |
}
|
82 |
],
|
83 |
temperature=0.1,
|
84 |
+
max_tokens=150,
|
85 |
top_p=1,
|
86 |
stream=False,
|
87 |
stop=None
|
|
|
91 |
print(f"Detailed error: {str(e)}")
|
92 |
return f"Analysis Error: {str(e)}"
|
93 |
|
94 |
+
def draw_observations(self, image, observations):
|
95 |
+
height, width = image.shape[:2]
|
96 |
+
font = cv2.FONT_HERSHEY_SIMPLEX
|
97 |
+
font_scale = 0.5
|
98 |
+
thickness = 2
|
99 |
+
|
100 |
+
# Generate random positions for each observation
|
101 |
+
for idx, obs in enumerate(observations):
|
102 |
+
color = self.colors[idx % len(self.colors)]
|
103 |
+
|
104 |
+
# Generate random box position
|
105 |
+
box_width = width // 3
|
106 |
+
box_height = height // 3
|
107 |
+
x = random.randint(0, width - box_width)
|
108 |
+
y = random.randint(0, height - box_height)
|
109 |
+
|
110 |
+
# Draw rectangle
|
111 |
+
cv2.rectangle(image, (x, y), (x + box_width, y + box_height), color, 2)
|
112 |
+
|
113 |
+
# Add label with background
|
114 |
+
label = obs[:40] + "..." if len(obs) > 40 else obs
|
115 |
+
label_size = cv2.getTextSize(label, font, font_scale, thickness)[0]
|
116 |
+
cv2.rectangle(image, (x, y - 20), (x + label_size[0], y), color, -1)
|
117 |
+
cv2.putText(image, label, (x, y - 5), font, font_scale, (255, 255, 255), thickness)
|
118 |
+
|
119 |
+
return image
|
120 |
+
|
121 |
def process_frame(self, frame: np.ndarray) -> tuple[np.ndarray, str]:
|
122 |
if frame is None:
|
123 |
return None, "No image provided"
|
124 |
|
125 |
analysis = self.analyze_frame(frame)
|
126 |
+
display_frame = self.resize_image(frame.copy())
|
127 |
|
128 |
+
# Parse observations from the analysis
|
129 |
+
observations = []
|
130 |
+
for line in analysis.split('\n'):
|
131 |
+
line = line.strip()
|
132 |
+
if line.startswith('-'):
|
133 |
+
# Extract text between <location> tags if present
|
134 |
+
if '<location>' in line and '</location>' in line:
|
135 |
+
start = line.find('<location>') + len('<location>')
|
136 |
+
end = line.find('</location>')
|
137 |
+
observation = line[end + len('</location>'):].strip()
|
138 |
+
else:
|
139 |
+
observation = line[1:].strip() # Remove the dash
|
140 |
+
if observation:
|
141 |
+
observations.append(observation)
|
142 |
|
143 |
+
# Draw observations on the image
|
144 |
+
annotated_frame = self.draw_observations(display_frame, observations)
|
145 |
+
|
146 |
+
return annotated_frame, analysis
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
|
148 |
# Create the main interface
|
149 |
monitor = SafetyMonitor()
|
|
|
153 |
|
154 |
with gr.Row():
|
155 |
input_image = gr.Image(label="Upload Image")
|
156 |
+
output_image = gr.Image(label="Annotated Results")
|
157 |
|
158 |
+
analysis_text = gr.Textbox(label="Detailed Analysis", lines=5)
|
159 |
|
160 |
def analyze_image(image):
|
161 |
if image is None:
|