|
import os |
|
import base64 |
|
import gradio as gr |
|
from PIL import Image |
|
import io |
|
import json |
|
from groq import Groq |
|
|
|
|
|
GROQ_API_KEY = os.environ.get("GROQ_API_KEY") |
|
|
|
|
|
client = Groq(api_key=GROQ_API_KEY) |
|
|
|
def encode_image(image): |
|
buffered = io.BytesIO() |
|
image.save(buffered, format="PNG") |
|
return base64.b64encode(buffered.getvalue()).decode('utf-8') |
|
|
|
def analyze_construction_image(image, follow_up_question=""): |
|
if image is None: |
|
return "Error: No image uploaded", "", "" |
|
|
|
try: |
|
image_data_url = f"data:image/png;base64,{encode_image(image)}" |
|
|
|
messages = [ |
|
{ |
|
"role": "user", |
|
"content": [ |
|
{ |
|
"type": "text", |
|
"text": "Analyze this construction site image. Identify any issues or snags, categorize them, provide a detailed description, and suggest steps to resolve them. Output the result in JSON format." |
|
}, |
|
{ |
|
"type": "image_url", |
|
"image_url": { |
|
"url": image_data_url |
|
} |
|
} |
|
] |
|
} |
|
] |
|
|
|
if follow_up_question: |
|
messages.append({ |
|
"role": "user", |
|
"content": follow_up_question |
|
}) |
|
|
|
completion = client.chat.completions.create( |
|
model="llama-3.2-90b-vision-preview", |
|
messages=messages, |
|
temperature=0.7, |
|
max_tokens=1000, |
|
top_p=1, |
|
stream=False, |
|
response_format={"type": "json_object"}, |
|
stop=None |
|
) |
|
|
|
result = json.loads(completion.choices[0].message.content) |
|
|
|
snag_category = result.get('snag_category', 'N/A') |
|
snag_description = result.get('snag_description', 'N/A') |
|
desnag_steps = '\n'.join(result.get('desnag_steps', ['N/A'])) |
|
|
|
return snag_category, snag_description, desnag_steps |
|
except Exception as e: |
|
return f"Error: {str(e)}", "", "" |
|
|
|
|
|
iface = gr.Interface( |
|
fn=analyze_construction_image, |
|
inputs=[ |
|
gr.Image(type="pil", label="Upload Construction Image"), |
|
gr.Textbox(label="Follow-up Question (Optional)") |
|
], |
|
outputs=[ |
|
gr.Textbox(label="Snag Category"), |
|
gr.Textbox(label="Snag Description"), |
|
gr.Textbox(label="Steps to Desnag") |
|
], |
|
title="Construction Image Analyzer (Llama 3.2 90B Vision via Groq)", |
|
description="Upload a construction site image to identify issues and get desnag steps using Llama 3.2 90B Vision technology through Groq API. You can also ask follow-up questions about the image.", |
|
examples=[ |
|
["example_image1.jpg", "What safety concerns do you see?"], |
|
["example_image2.jpg", "Is there any visible structural damage?"] |
|
], |
|
cache_examples=True, |
|
theme="default" |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
iface.launch() |