Spaces:
Runtime error
Runtime error
import gradio as gr | |
import librosa | |
import numpy as np | |
import torch | |
from transformers import pipeline | |
language_classes = { | |
0: "Arabic", | |
1: "Basque", | |
2: "Breton", | |
3: "Catalan", | |
4: "Chinese_China", | |
5: "Chinese_Hongkong", | |
6: "Chinese_Taiwan", | |
7: "Chuvash", | |
8: "Czech", | |
9: "Dhivehi", | |
10: "Dutch", | |
11: "English", | |
12: "Esperanto", | |
13: "Estonian", | |
14: "French", | |
15: "Frisian", | |
16: "Georgian", | |
17: "German", | |
18: "Greek", | |
19: "Hakha_Chin", | |
20: "Indonesian", | |
21: "Interlingua", | |
22: "Italian", | |
23: "Japanese", | |
24: "Kabyle", | |
25: "Kinyarwanda", | |
26: "Kyrgyz", | |
27: "Latvian", | |
28: "Maltese", | |
29: "Mongolian", | |
30: "Persian", | |
31: "Polish", | |
32: "Portuguese", | |
33: "Romanian", | |
34: "Romansh_Sursilvan", | |
35: "Russian", | |
36: "Sakha", | |
37: "Slovenian", | |
38: "Spanish", | |
39: "Swedish", | |
40: "Tamil", | |
41: "Tatar", | |
42: "Turkish", | |
43: "Ukranian", | |
44: "Welsh" | |
} | |
username = "AescF" ## Complete your username | |
model_id = "AescF/hubert-base-ls960-finetuned-common_language" | |
device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
pipe = pipeline("audio-classification", model=model_id, device=device) | |
# def predict_trunc(filepath): | |
# preprocessed = pipe.preprocess(filepath) | |
# truncated = pipe.feature_extractor.pad(preprocessed,truncation=True, max_length = 16_000*30) | |
# model_outputs = pipe.forward(truncated) | |
# outputs = pipe.postprocess(model_outputs) | |
# return outputs | |
def classify_audio(filepath): | |
""" | |
Goes from | |
[{'score': 0.8339303731918335, 'label': 'country'}, | |
{'score': 0.11914275586605072, 'label': 'rock'},] | |
to | |
{"country": 0.8339303731918335, "rock":0.11914275586605072} | |
""" | |
start_time = timer() | |
preds = pipe(filepath) | |
# preds = predict_trunc(filepath) | |
outputs = {} | |
pred_time = round(timer() - start_time, 5) | |
for p in preds: | |
outputs[p["label"]] = p["score"], timer | |
return outputs | |
title = "🎵 Music Genre Classifier" | |
description = """ | |
Demo for a music genre classifier trained on [GTZAN](https://huggingface.co/datasets/marsyas/gtzan) | |
For more info checkout [GITHUB](https://github.com/AEscF) | |
""" | |
demo = gr.Interface( | |
fn=classify_audio, | |
inputs=gr.Audio(type="filepath"), | |
outputs=[gr.Label(label="Predictions"), gr.Number(label="Prediction time (s)")], | |
title=title, | |
description=description, | |
examples=filenames, | |
) | |
demo.launch() |