Spaces:
Running
on
Zero
Running
on
Zero
fixing
Browse files
app.py
CHANGED
@@ -1,75 +1,112 @@
|
|
1 |
import os
|
|
|
2 |
import torch
|
3 |
-
|
|
|
4 |
from PIL import Image
|
5 |
import gradio as gr
|
6 |
|
7 |
-
|
8 |
-
|
9 |
-
token = os.environ.get('HUGGING_FACE_HUB_TOKEN')
|
10 |
-
if token:
|
11 |
-
login(token=token)
|
12 |
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
hub_model_path,
|
22 |
-
trust_remote_code=True,
|
23 |
-
target_modules=["q_proj", "v_proj"], # จาก adapter_config
|
24 |
-
token=token
|
25 |
-
)
|
26 |
-
|
27 |
-
return model, processor
|
28 |
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
-
def
|
32 |
if image is None:
|
33 |
return "กรุณาอัพโหลดรูปภาพ"
|
34 |
-
|
35 |
-
if not isinstance(image, Image.Image):
|
36 |
-
image = Image.fromarray(image)
|
37 |
|
38 |
-
|
39 |
-
|
|
|
|
|
|
|
|
|
40 |
|
41 |
-
|
42 |
-
|
43 |
-
messages = [
|
44 |
-
{
|
45 |
-
"role": "user",
|
46 |
-
"content": [
|
47 |
-
{"type": "text", "text": prompt},
|
48 |
-
{"type": "image", "image": image}
|
49 |
-
],
|
50 |
-
}
|
51 |
-
]
|
52 |
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
)
|
63 |
-
|
64 |
-
transcription = processor.decode(outputs[0], skip_special_tokens=True)
|
65 |
-
return transcription.strip()
|
66 |
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
-
if __name__ == "__main__":
|
75 |
-
|
|
|
|
|
|
1 |
import os
|
2 |
+
import warnings
|
3 |
import torch
|
4 |
+
import gc
|
5 |
+
from transformers import AutoModelForVision2Seq, AutoProcessor, BitsAndBytesConfig
|
6 |
from PIL import Image
|
7 |
import gradio as gr
|
8 |
|
9 |
+
warnings.filterwarnings('ignore')
|
10 |
+
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
|
|
|
|
|
|
|
11 |
|
12 |
+
# Global variables
|
13 |
+
model = None
|
14 |
+
processor = None
|
15 |
+
|
16 |
+
if torch.cuda.is_available():
|
17 |
+
torch.cuda.empty_cache()
|
18 |
+
gc.collect()
|
19 |
+
print("เคลียร์ CUDA cache เรียบร้อยแล้ว")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
+
def load_model_and_processor():
|
22 |
+
"""โหลดโมเดลและ processor"""
|
23 |
+
global model, processor
|
24 |
+
print("กำลังโหลดโมเดลและ processor...")
|
25 |
+
|
26 |
+
try:
|
27 |
+
base_model_path = "meta-llama/Llama-3.2-11B-Vision-Instruct"
|
28 |
+
hub_model_path = "Aekanun/thai-handwriting-llm"
|
29 |
+
|
30 |
+
# ตั้งค่า BitsAndBytes แบบเดียวกับต้นฉบับ
|
31 |
+
bnb_config = BitsAndBytesConfig(
|
32 |
+
load_in_4bit=True,
|
33 |
+
bnb_4bit_use_double_quant=True,
|
34 |
+
bnb_4bit_quant_type="nf4",
|
35 |
+
bnb_4bit_compute_dtype=torch.bfloat16
|
36 |
+
)
|
37 |
+
|
38 |
+
# โหลด processor แบบเดียวกับต้นฉบับ (ไม่มี token)
|
39 |
+
processor = AutoProcessor.from_pretrained(base_model_path)
|
40 |
+
|
41 |
+
# โหลดโมเดลจาก Hub แบบเดียวกับต้นฉบับ
|
42 |
+
print("กำลังโหลดโมเดลจาก Hub...")
|
43 |
+
model = AutoModelForVision2Seq.from_pretrained(
|
44 |
+
hub_model_path,
|
45 |
+
device_map="auto",
|
46 |
+
torch_dtype=torch.bfloat16,
|
47 |
+
quantization_config=bnb_config,
|
48 |
+
trust_remote_code=True
|
49 |
+
)
|
50 |
+
print("โหลดโมเดลจาก Hub สำเร็จ!")
|
51 |
+
|
52 |
+
return True
|
53 |
+
except Exception as e:
|
54 |
+
print(f"เกิดข้อผิดพลาดในการโหลดโมเดล: {str(e)}")
|
55 |
+
return False
|
56 |
|
57 |
+
def process_handwriting(image):
|
58 |
if image is None:
|
59 |
return "กรุณาอัพโหลดรูปภาพ"
|
|
|
|
|
|
|
60 |
|
61 |
+
try:
|
62 |
+
if not isinstance(image, Image.Image):
|
63 |
+
image = Image.fromarray(image)
|
64 |
+
|
65 |
+
if image.mode != "RGB":
|
66 |
+
image = image.convert("RGB")
|
67 |
|
68 |
+
prompt = """Transcribe the Thai handwritten text from the provided image.
|
69 |
+
Only return the transcription in Thai language."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
+
messages = [
|
72 |
+
{
|
73 |
+
"role": "user",
|
74 |
+
"content": [
|
75 |
+
{"type": "text", "text": prompt},
|
76 |
+
{"type": "image", "image": image}
|
77 |
+
],
|
78 |
+
}
|
79 |
+
]
|
|
|
|
|
|
|
|
|
80 |
|
81 |
+
text = processor.apply_chat_template(messages, tokenize=False)
|
82 |
+
inputs = processor(text=text, images=image, return_tensors="pt")
|
83 |
+
inputs = {k: v.to(model.device) for k, v in inputs.items()}
|
84 |
+
|
85 |
+
with torch.no_grad():
|
86 |
+
outputs = model.generate(
|
87 |
+
**inputs,
|
88 |
+
max_new_tokens=256,
|
89 |
+
do_sample=False,
|
90 |
+
pad_token_id=processor.tokenizer.pad_token_id
|
91 |
+
)
|
92 |
+
|
93 |
+
transcription = processor.decode(outputs[0], skip_special_tokens=True)
|
94 |
+
return transcription.strip()
|
95 |
+
|
96 |
+
except Exception as e:
|
97 |
+
return f"เกิดข้อผิดพลาด: {str(e)}"
|
98 |
+
|
99 |
+
print("กำลังเริ่มต้นแอปพลิเคชัน...")
|
100 |
+
if load_model_and_processor():
|
101 |
+
demo = gr.Interface(
|
102 |
+
fn=process_handwriting,
|
103 |
+
inputs=gr.Image(type="pil", label="อัพโหลดรูปลายมือเขียนภาษาไทย"),
|
104 |
+
outputs=gr.Textbox(label="ข้อความที่แปลงได้"),
|
105 |
+
title="Thai Handwriting Recognition",
|
106 |
+
description="อัพโหลดรูปภาพลายมือเขียนภาษาไทยเพื่อแปลงเป็นข้อความ"
|
107 |
+
)
|
108 |
|
109 |
+
if __name__ == "__main__":
|
110 |
+
demo.launch()
|
111 |
+
else:
|
112 |
+
print("ไม่สามารถเริ่มต้นแอปพลิเคชันได้")
|