Spaces:
Runtime error
Runtime error
First Commit
Browse files- .gitattributes +2 -0
- app.py +70 -0
- images/fruits.jpg +3 -0
- images/living.jpg +0 -0
- images/street.jpg +3 -0
- lang_efficient_sam/LangEfficientSAM.py +107 -0
- lang_efficient_sam/__init__.py +0 -0
- lang_efficient_sam/__pycache__/LangEfficientSAM.cpython-312.pyc +0 -0
- lang_efficient_sam/__pycache__/__init__.cpython-312.pyc +0 -0
- lang_efficient_sam/utils/__init__.py +0 -0
- lang_efficient_sam/utils/__pycache__/__init__.cpython-312.pyc +0 -0
- lang_efficient_sam/utils/__pycache__/draw_image.cpython-312.pyc +0 -0
- lang_efficient_sam/utils/draw_image.py +12 -0
- models/efficientsam_s_cpu.jit +3 -0
- models/efficientsam_s_gpu.jit +3 -0
- requirements.txt +8 -0
.gitattributes
CHANGED
@@ -34,3 +34,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*.jit filter=lfs diff=lfs merge=lfs -text
|
36 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*.jit filter=lfs diff=lfs merge=lfs -text
|
36 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
37 |
+
images/fruits.jpg filter=lfs diff=lfs merge=lfs -text
|
38 |
+
images/street.jpg filter=lfs diff=lfs merge=lfs -text
|
app.py
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import warnings
|
3 |
+
|
4 |
+
import gradio as gr
|
5 |
+
import numpy as np
|
6 |
+
from PIL import Image
|
7 |
+
|
8 |
+
from lang_efficient_sam.LangEfficientSAM import LangEfficientSAM
|
9 |
+
from lang_efficient_sam.utils.draw_image import draw_image
|
10 |
+
|
11 |
+
warnings.filterwarnings("ignore")
|
12 |
+
|
13 |
+
model = LangEfficientSAM()
|
14 |
+
|
15 |
+
|
16 |
+
def predict(box_threshold, text_threshold, image_path, text_prompt):
|
17 |
+
print("Predicting... ", box_threshold, text_threshold, image_path, text_prompt)
|
18 |
+
|
19 |
+
image_pil = Image.open(image_path).convert("RGB")
|
20 |
+
|
21 |
+
masks, boxes, phrases, logits = model.predict(image_pil, text_prompt, box_threshold, text_threshold)
|
22 |
+
|
23 |
+
labels = [f"{phrase} {logit:.2f}" for phrase, logit in zip(phrases, logits)]
|
24 |
+
|
25 |
+
image_array = np.asarray(image_pil)
|
26 |
+
image = draw_image(image_array, masks, boxes, labels)
|
27 |
+
image = Image.fromarray(np.uint8(image)).convert("RGB")
|
28 |
+
|
29 |
+
return image
|
30 |
+
|
31 |
+
|
32 |
+
title = "LangEfficientSAM"
|
33 |
+
|
34 |
+
inputs = [
|
35 |
+
gr.Slider(0, 1, value=0.3, label="Box threshold"),
|
36 |
+
gr.Slider(0, 1, value=0.25, label="Text threshold"),
|
37 |
+
gr.Image(type="filepath", label='Image'),
|
38 |
+
gr.Textbox(lines=1, label="Text Prompt"),
|
39 |
+
]
|
40 |
+
|
41 |
+
outputs = [gr.Image(type="pil", label="Output Image")]
|
42 |
+
|
43 |
+
examples = [
|
44 |
+
[
|
45 |
+
0.20,
|
46 |
+
0.20,
|
47 |
+
os.path.join(os.path.dirname(__file__), "images", "living.jpg"),
|
48 |
+
"fabric",
|
49 |
+
],
|
50 |
+
[
|
51 |
+
0.36,
|
52 |
+
0.25,
|
53 |
+
os.path.join(os.path.dirname(__file__), "images", "fruits.jpg"),
|
54 |
+
"apple",
|
55 |
+
],
|
56 |
+
[
|
57 |
+
0.20,
|
58 |
+
0.20,
|
59 |
+
os.path.join(os.path.dirname(__file__), "images", "street.jpg"),
|
60 |
+
"car",
|
61 |
+
]
|
62 |
+
]
|
63 |
+
|
64 |
+
demo = gr.Interface(fn=predict,
|
65 |
+
inputs=inputs,
|
66 |
+
outputs=outputs,
|
67 |
+
examples=examples,
|
68 |
+
title=title)
|
69 |
+
|
70 |
+
demo.launch(debug=False, share=False)
|
images/fruits.jpg
ADDED
Git LFS Details
|
images/living.jpg
ADDED
images/street.jpg
ADDED
Git LFS Details
|
lang_efficient_sam/LangEfficientSAM.py
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import groundingdino.datasets.transforms as T
|
2 |
+
import torch
|
3 |
+
import numpy as np
|
4 |
+
from groundingdino.models import build_model
|
5 |
+
from groundingdino.util import box_ops
|
6 |
+
from groundingdino.util.inference import predict
|
7 |
+
from groundingdino.util.slconfig import SLConfig
|
8 |
+
from groundingdino.util.utils import clean_state_dict
|
9 |
+
from torchvision.transforms import ToTensor
|
10 |
+
from huggingface_hub import hf_hub_download
|
11 |
+
import time
|
12 |
+
|
13 |
+
|
14 |
+
def load_model_hugging_face(repo_id, filename, ckpt_config_filename, device='cpu'):
|
15 |
+
cache_config_file = hf_hub_download(repo_id=repo_id, filename=ckpt_config_filename)
|
16 |
+
|
17 |
+
args = SLConfig.fromfile(cache_config_file)
|
18 |
+
model = build_model(args)
|
19 |
+
args.device = device
|
20 |
+
|
21 |
+
cache_file = hf_hub_download(repo_id=repo_id, filename=filename)
|
22 |
+
checkpoint = torch.load(cache_file, map_location='cpu')
|
23 |
+
log = model.load_state_dict(clean_state_dict(checkpoint['model']), strict=False)
|
24 |
+
print(f"Model loaded from {cache_file} \n => {log}")
|
25 |
+
model.eval()
|
26 |
+
return model
|
27 |
+
|
28 |
+
|
29 |
+
class LangEfficientSAM:
|
30 |
+
def __init__(self, device=torch.device("cuda" if torch.cuda.is_available() else "cpu")):
|
31 |
+
self.device = device
|
32 |
+
print("Device:", self.device)
|
33 |
+
if self.device == "cpu":
|
34 |
+
self.sam_efficient = torch.jit.load('./models/efficientsam_s_cpu.jit')
|
35 |
+
else:
|
36 |
+
self.sam_efficient = torch.jit.load('./models/efficientsam_s_gpu.jit')
|
37 |
+
ckpt_repo_id = "ShilongLiu/GroundingDINO"
|
38 |
+
ckpt_filename = "groundingdino_swinb_cogcoor.pth"
|
39 |
+
ckpt_config_filename = "GroundingDINO_SwinB.cfg.py"
|
40 |
+
self.groundingdino = load_model_hugging_face(ckpt_repo_id,
|
41 |
+
ckpt_filename,
|
42 |
+
ckpt_config_filename,
|
43 |
+
self.device)
|
44 |
+
|
45 |
+
def predict_dino(self, image_pil, text_prompt, box_threshold, text_threshold):
|
46 |
+
start = time.time()
|
47 |
+
transform = T.Compose([
|
48 |
+
T.RandomResize([800], max_size=1333),
|
49 |
+
T.ToTensor(),
|
50 |
+
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
51 |
+
])
|
52 |
+
image_transformed, _ = transform(image_pil, None)
|
53 |
+
|
54 |
+
boxes, logits, phrases = predict(model=self.groundingdino,
|
55 |
+
image=image_transformed,
|
56 |
+
caption=text_prompt,
|
57 |
+
box_threshold=box_threshold,
|
58 |
+
text_threshold=text_threshold,
|
59 |
+
device=self.device)
|
60 |
+
W, H = image_pil.size
|
61 |
+
boxes = box_ops.box_cxcywh_to_xyxy(boxes) * torch.Tensor([W, H, W, H])
|
62 |
+
# print("DINO time: ", time.time() - start)
|
63 |
+
|
64 |
+
return boxes, logits, phrases
|
65 |
+
|
66 |
+
def predict_sam(self, image, box):
|
67 |
+
start = time.time()
|
68 |
+
img_tensor = ToTensor()(image).to(device=self.device)
|
69 |
+
bbox = torch.reshape(box.clone().detach(), [1, 1, 2, 2]).to(device=self.device)
|
70 |
+
bbox_labels = torch.reshape(torch.tensor([2, 3]), [1, 1, 2]).to(device=self.device)
|
71 |
+
|
72 |
+
predicted_logits, predicted_iou = self.sam_efficient(
|
73 |
+
img_tensor[None, ...],
|
74 |
+
bbox,
|
75 |
+
bbox_labels,
|
76 |
+
)
|
77 |
+
predicted_logits = predicted_logits.cpu()
|
78 |
+
all_masks = torch.ge(torch.sigmoid(predicted_logits[0, 0, :, :, :]), 0.5).numpy()
|
79 |
+
predicted_iou = predicted_iou[0, 0, ...].cpu().detach().numpy()
|
80 |
+
|
81 |
+
max_predicted_iou = -1
|
82 |
+
selected_mask_using_predicted_iou = None
|
83 |
+
for m in range(all_masks.shape[0]):
|
84 |
+
curr_predicted_iou = predicted_iou[m]
|
85 |
+
if (
|
86 |
+
curr_predicted_iou > max_predicted_iou
|
87 |
+
or selected_mask_using_predicted_iou is None
|
88 |
+
):
|
89 |
+
max_predicted_iou = curr_predicted_iou
|
90 |
+
selected_mask_using_predicted_iou = all_masks[m]
|
91 |
+
|
92 |
+
# print("SAM time: ", time.time() - start)
|
93 |
+
return selected_mask_using_predicted_iou
|
94 |
+
|
95 |
+
def predict(self, image_pil, text_prompt, box_threshold=0.3, text_threshold=0.25):
|
96 |
+
boxes, logits, phrases = self.predict_dino(image_pil, text_prompt, box_threshold, text_threshold)
|
97 |
+
# masks = torch.tensor([])
|
98 |
+
masks = []
|
99 |
+
if len(boxes) > 0:
|
100 |
+
for box in boxes:
|
101 |
+
mask = self.predict_sam(image_pil, box)
|
102 |
+
masks.append(mask)
|
103 |
+
|
104 |
+
masks = np.array(masks)
|
105 |
+
masks = torch.from_numpy(masks)
|
106 |
+
|
107 |
+
return masks, boxes, phrases, logits
|
lang_efficient_sam/__init__.py
ADDED
File without changes
|
lang_efficient_sam/__pycache__/LangEfficientSAM.cpython-312.pyc
ADDED
Binary file (6.25 kB). View file
|
|
lang_efficient_sam/__pycache__/__init__.cpython-312.pyc
ADDED
Binary file (171 Bytes). View file
|
|
lang_efficient_sam/utils/__init__.py
ADDED
File without changes
|
lang_efficient_sam/utils/__pycache__/__init__.cpython-312.pyc
ADDED
Binary file (177 Bytes). View file
|
|
lang_efficient_sam/utils/__pycache__/draw_image.cpython-312.pyc
ADDED
Binary file (1.03 kB). View file
|
|
lang_efficient_sam/utils/draw_image.py
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torchvision.utils import draw_bounding_boxes
|
3 |
+
from torchvision.utils import draw_segmentation_masks
|
4 |
+
|
5 |
+
|
6 |
+
def draw_image(image, masks, boxes, labels, alpha=0.4):
|
7 |
+
image = torch.from_numpy(image).permute(2, 0, 1)
|
8 |
+
if len(boxes) > 0:
|
9 |
+
image = draw_bounding_boxes(image, boxes, colors=['red'] * len(boxes), labels=labels, width=2)
|
10 |
+
if len(masks) > 0:
|
11 |
+
image = draw_segmentation_masks(image, masks=masks, colors=['cyan'] * len(masks), alpha=alpha)
|
12 |
+
return image.numpy().transpose(1, 2, 0)
|
models/efficientsam_s_cpu.jit
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c37a9cd7fdf97a90f8698f9150333b6f8858e6896f074823dfac7907151551ba
|
3 |
+
size 134
|
models/efficientsam_s_gpu.jit
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c2d60aea949baf6ea041a1dfae540145d401da9294e7e7d2074618b3dbd7fa68
|
3 |
+
size 134
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio==4.18.0
|
2 |
+
groundingdino-py==0.4.0
|
3 |
+
matplotlib==3.8.2
|
4 |
+
numpy==1.26.4
|
5 |
+
opencv-python==4.9.0.80
|
6 |
+
pillow==10.2.0
|
7 |
+
torch==2.2.0
|
8 |
+
torchvision==0.17.0
|