euiia commited on
Commit
98b590e
·
verified ·
1 Parent(s): c7e0b21

Upload ltx_manager_helpers (4).py

Browse files
Files changed (1) hide show
  1. ltx_manager_helpers (4).py +223 -0
ltx_manager_helpers (4).py ADDED
@@ -0,0 +1,223 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # ltx_manager_helpers.py
2
+ # Copyright (C) 4 de Agosto de 2025 Carlos Rodrigues dos Santos
3
+ # (Licenciamento e cabeçalhos permanecem os mesmos)
4
+
5
+ import torch
6
+ import gc
7
+ import os
8
+ import yaml
9
+ import logging
10
+ import huggingface_hub
11
+ import time
12
+ import threading
13
+ import json
14
+
15
+ from optimization import optimize_ltx_worker, can_optimize_fp8
16
+ from hardware_manager import hardware_manager
17
+ from inference import create_ltx_video_pipeline, calculate_padding
18
+ from ltx_video.pipelines.pipeline_ltx_video import LatentConditioningItem
19
+
20
+ logger = logging.getLogger(__name__)
21
+
22
+ class LtxWorker:
23
+ """
24
+ Representa uma única instância da pipeline LTX-Video em um dispositivo específico.
25
+ Gerencia o carregamento do modelo para a CPU e a movimentação de/para a GPU.
26
+ """
27
+ def __init__(self, device_id, ltx_config_file):
28
+ # ... (código do LtxWorker __init__ permanece o mesmo) ...
29
+ self.cpu_device = torch.device('cpu')
30
+ self.device = torch.device(device_id if torch.cuda.is_available() else 'cpu')
31
+ logger.info(f"LTX Worker ({self.device}): Inicializando com config '{ltx_config_file}'...")
32
+
33
+ with open(ltx_config_file, "r") as file:
34
+ self.config = yaml.safe_load(file)
35
+
36
+ self.is_distilled = "distilled" in self.config.get("checkpoint_path", "")
37
+
38
+ models_dir = "downloaded_models_gradio"
39
+
40
+ logger.info(f"LTX Worker ({self.device}): Carregando modelo para a CPU...")
41
+ model_path = os.path.join(models_dir, self.config["checkpoint_path"])
42
+ if not os.path.exists(model_path):
43
+ model_path = huggingface_hub.hf_hub_download(
44
+ repo_id="Lightricks/LTX-Video", filename=self.config["checkpoint_path"],
45
+ local_dir=models_dir, local_dir_use_symlinks=False
46
+ )
47
+
48
+ self.pipeline = create_ltx_video_pipeline(
49
+ ckpt_path=model_path, precision=self.config["precision"],
50
+ text_encoder_model_name_or_path=self.config["text_encoder_model_name_or_path"],
51
+ sampler=self.config["sampler"], device='cpu'
52
+ )
53
+ logger.info(f"LTX Worker ({self.device}): Modelo pronto na CPU. É um modelo destilado? {self.is_distilled}")
54
+
55
+ def to_gpu(self):
56
+ """Move o pipeline para a GPU designada E OTIMIZA SE POSSÍVEL."""
57
+ if self.device.type == 'cpu': return
58
+ logger.info(f"LTX Worker: Movendo pipeline para a GPU {self.device}...")
59
+ self.pipeline.to(self.device)
60
+
61
+ # A otimização agora ocorre aqui, uma única vez, quando o modelo vai para a GPU.
62
+ if self.device.type == 'cuda' and can_optimize_fp8():
63
+ logger.info(f"LTX Worker ({self.device}): GPU com suporte a FP8 detectada. Iniciando otimização...")
64
+ optimize_ltx_worker(self)
65
+ logger.info(f"LTX Worker ({self.device}): Otimização concluída.")
66
+ elif self.device.type == 'cuda':
67
+ logger.info(f"LTX Worker ({self.device}): Otimização FP8 não suportada ou desativada.")
68
+
69
+ def to_cpu(self):
70
+ """Move o pipeline de volta para a CPU e libera a memória da GPU."""
71
+ if self.device.type == 'cpu': return
72
+ logger.info(f"LTX Worker: Descarregando pipeline da GPU {self.device}...")
73
+ self.pipeline.to('cpu')
74
+ gc.collect()
75
+ if torch.cuda.is_available(): torch.cuda.empty_cache()
76
+
77
+ def generate_video_fragment_internal(self, **kwargs):
78
+ """Invoca a pipeline de geração."""
79
+ return self.pipeline(**kwargs).images
80
+
81
+ class LtxPoolManager:
82
+ """
83
+ Gerencia um pool de LtxWorkers para otimizar o uso de múltiplas GPUs.
84
+ NOVO MODO "HOT START": Mantém todos os modelos carregados na VRAM para latência mínima.
85
+ """
86
+ def __init__(self, device_ids, ltx_config_file):
87
+ logger.info(f"LTX POOL MANAGER: Criando workers para os dispositivos: {device_ids}")
88
+ self.workers = [LtxWorker(dev_id, ltx_config_file) for dev_id in device_ids]
89
+ self.current_worker_index = 0
90
+ self.lock = threading.Lock()
91
+
92
+ # ######################################################################
93
+ # ## MUDANÇA 1: PRÉ-AQUECIMENTO DAS GPUs ##
94
+ # ######################################################################
95
+ if all(w.device.type == 'cuda' for w in self.workers):
96
+ logger.info("LTX POOL MANAGER: MODO HOT START ATIVADO. Pré-aquecendo todas as GPUs...")
97
+ for worker in self.workers:
98
+ worker.to_gpu()
99
+ logger.info("LTX POOL MANAGER: Todas as GPUs estão quentes e prontas.")
100
+ else:
101
+ logger.info("LTX POOL MANAGER: Operando em modo CPU ou misto. O pré-aquecimento de GPU foi ignorado.")
102
+ # ######################################################################
103
+
104
+ def _prepare_and_log_params(self, worker_to_use, **kwargs):
105
+ # ... (Esta função permanece exatamente a mesma) ...
106
+ target_device = worker_to_use.device
107
+ height, width = kwargs['height'], kwargs['width']
108
+
109
+ conditioning_data = kwargs.get('conditioning_items_data', [])
110
+ final_conditioning_items = []
111
+ conditioning_log_details = []
112
+ for i, item in enumerate(conditioning_data):
113
+ if hasattr(item, 'latent_tensor'):
114
+ item.latent_tensor = item.latent_tensor.to(target_device)
115
+ final_conditioning_items.append(item)
116
+ conditioning_log_details.append(
117
+ f" - Item {i}: frame={item.media_frame_number}, strength={item.conditioning_strength:.2f}, shape={list(item.latent_tensor.shape)}"
118
+ )
119
+
120
+ first_pass_config = worker_to_use.config.get("first_pass", {})
121
+ padded_h, padded_w = ((height - 1) // 32 + 1) * 32, ((width - 1) // 32 + 1) * 32
122
+ padding_vals = calculate_padding(height, width, padded_h, padded_w)
123
+
124
+ pipeline_params = {
125
+ "height": padded_h, "width": padded_w,
126
+ "num_frames": kwargs['video_total_frames'], "frame_rate": kwargs['video_fps'],
127
+ "generator": torch.Generator(device=target_device).manual_seed(int(kwargs.get('seed', time.time())) + kwargs['current_fragment_index']),
128
+ "conditioning_items": final_conditioning_items,
129
+ "is_video": True, "vae_per_channel_normalize": True,
130
+ "decode_timestep": float(kwargs.get('decode_timestep', worker_to_use.config.get("decode_timestep", 0.05))),
131
+ "image_cond_noise_scale": float(kwargs.get('image_cond_noise_scale', 0.0)),
132
+ "prompt": kwargs['motion_prompt'],
133
+ "negative_prompt": kwargs.get('negative_prompt', "blurry, distorted, static, bad quality, artifacts"),
134
+ "guidance_scale": float(kwargs.get('guidance_scale', 2.0)),
135
+ "stg_scale": float(kwargs.get('stg_scale', 0.025)),
136
+ "rescaling_scale": float(kwargs.get('rescaling_scale', 0.15)),
137
+ }
138
+
139
+ if worker_to_use.is_distilled:
140
+ pipeline_params["timesteps"] = first_pass_config.get("timesteps")
141
+ pipeline_params["num_inference_steps"] = len(pipeline_params["timesteps"]) if "timesteps" in first_pass_config else 20
142
+ else:
143
+ pipeline_params["num_inference_steps"] = int(kwargs.get('num_inference_steps', 20))
144
+
145
+ log_friendly_params = pipeline_params.copy()
146
+ log_friendly_params.pop('generator', None)
147
+ log_friendly_params.pop('conditioning_items', None)
148
+
149
+ logger.info("="*60)
150
+ logger.info(f"CHAMADA AO PIPELINE LTX NO DISPOSITIVO: {worker_to_use.device}")
151
+ logger.info(f"Modelo: {'Distilled' if worker_to_use.is_distilled else 'Base'}")
152
+ logger.info("-" * 20 + " PARÂMETROS DA PIPELINE " + "-" * 20)
153
+ logger.info(json.dumps(log_friendly_params, indent=2))
154
+ logger.info("-" * 20 + " ITENS DE CONDICIONAMENTO " + "-" * 19)
155
+ logger.info("\n".join(conditioning_log_details) if conditioning_log_details else " - Nenhum")
156
+ logger.info("="*60)
157
+
158
+ return pipeline_params, padding_vals
159
+
160
+ def _execute_on_worker(self, execution_fn, **kwargs):
161
+ """
162
+ Função unificada para selecionar um worker e executar uma tarefa,
163
+ sem a lógica de carregar/descarregar.
164
+ """
165
+ worker_to_use = None
166
+ try:
167
+ with self.lock:
168
+ worker_to_use = self.workers[self.current_worker_index]
169
+ self.current_worker_index = (self.current_worker_index + 1) % len(self.workers)
170
+
171
+ pipeline_params, padding_vals = self._prepare_and_log_params(worker_to_use, **kwargs)
172
+
173
+ result = execution_fn(worker_to_use, pipeline_params, **kwargs)
174
+
175
+ return result, padding_vals
176
+
177
+ except Exception as e:
178
+ logger.error(f"LTX POOL MANAGER: Erro durante a execução em {worker_to_use.device if worker_to_use else 'N/A'}: {e}", exc_info=True)
179
+ raise e
180
+ finally:
181
+ # Apenas limpa o cache da GPU, não descarrega o modelo.
182
+ if worker_to_use and worker_to_use.device.type == 'cuda':
183
+ with torch.cuda.device(worker_to_use.device):
184
+ gc.collect()
185
+ torch.cuda.empty_cache()
186
+
187
+ def generate_latent_fragment(self, **kwargs) -> (torch.Tensor, tuple):
188
+ """
189
+ Orquestra a geração de um novo fragmento de vídeo a partir do ruído.
190
+ """
191
+ def execution_logic(worker, params, **inner_kwargs):
192
+ params['output_type'] = "latent"
193
+ with torch.no_grad():
194
+ return worker.generate_video_fragment_internal(**params)
195
+
196
+ return self._execute_on_worker(execution_logic, **kwargs)
197
+
198
+ def refine_latents(self, upscaled_latents: torch.Tensor, **kwargs) -> (torch.Tensor, tuple):
199
+ """
200
+ Orquestra um passe de difusão curto em latentes já existentes para refinamento.
201
+ """
202
+ def execution_logic(worker, params, **inner_kwargs):
203
+ params['latents'] = upscaled_latents.to(worker.device, dtype=worker.pipeline.transformer.dtype)
204
+ params['strength'] = inner_kwargs.get('denoise_strength', 0.4)
205
+ params['num_inference_steps'] = int(inner_kwargs.get('refine_steps', 10))
206
+ params['output_type'] = "latent"
207
+
208
+ logger.info("LTX POOL MANAGER: Iniciando passe de refinamento (denoise) em latentes de alta resolução.")
209
+
210
+ with torch.no_grad():
211
+ return worker.generate_video_fragment_internal(**params)
212
+
213
+ return self._execute_on_worker(execution_logic, upscaled_latents=upscaled_latents, **kwargs)
214
+
215
+ # --- Instanciação Singleton ---
216
+ logger.info("Lendo config.yaml para inicializar o LTX Pool Manager...")
217
+ with open("config.yaml", 'r') as f:
218
+ config = yaml.safe_load(f)
219
+ ltx_gpus_required = config['specialists']['ltx']['gpus_required']
220
+ ltx_device_ids = hardware_manager.allocate_gpus('LTX', ltx_gpus_required)
221
+ ltx_config_path = config['specialists']['ltx']['config_file']
222
+ ltx_manager_singleton = LtxPoolManager(device_ids=ltx_device_ids, ltx_config_file=ltx_config_path)
223
+ logger.info("Especialista de Vídeo (LTX) pronto.")