euiia commited on
Commit
768a8fe
·
verified ·
1 Parent(s): 587a0e1

Update deformes4D_engine.py

Browse files
Files changed (1) hide show
  1. deformes4D_engine.py +131 -86
deformes4D_engine.py CHANGED
@@ -27,6 +27,7 @@ from upscaler_specialist import upscaler_specialist_singleton
27
  from hd_specialist import hd_specialist_singleton
28
  from ltx_video.models.autoencoders.causal_video_autoencoder import CausalVideoAutoencoder
29
  from ltx_video.models.autoencoders.vae_encode import vae_encode, vae_decode
 
30
 
31
  logger = logging.getLogger(__name__)
32
 
@@ -78,104 +79,141 @@ class Deformes4DEngine:
78
  tensor = torch.from_numpy(image_np).permute(2, 0, 1).unsqueeze(0).unsqueeze(2)
79
  tensor = (tensor * 2.0) - 1.0
80
  return self.pixels_to_latents(tensor)
81
-
 
82
  # --- NÚCLEO DA LÓGICA ADUC-SDR ---
83
- def generate_full_movie(self, keyframes: list, global_prompt: str, storyboard: list,
84
  seconds_per_fragment: float, trim_percent: int,
85
  handler_strength: float, destination_convergence_strength: float,
86
  use_upscaler: bool, use_refiner: bool, use_hd: bool, use_audio: bool,
87
  video_resolution: int, use_continuity_director: bool,
88
  progress: gr.Progress = gr.Progress()):
89
 
90
- num_transitions_to_generate = len(keyframes) - 1
91
- TOTAL_STEPS = num_transitions_to_generate + 4
92
- current_step = 0
93
-
94
  FPS = 24
95
  FRAMES_PER_LATENT_CHUNK = 8
96
  ECO_LATENT_CHUNKS = 2
97
 
98
  total_frames_brutos = self._quantize_to_multiple(int(seconds_per_fragment * FPS), FRAMES_PER_LATENT_CHUNK)
 
 
99
  frames_a_podar = self._quantize_to_multiple(int(total_frames_brutos * (trim_percent / 100)), FRAMES_PER_LATENT_CHUNK)
100
  latents_a_podar = frames_a_podar // FRAMES_PER_LATENT_CHUNK
101
 
102
- DEJAVU_FRAME_TARGET = frames_a_podar - 1 if frames_a_podar > 0 else 0
 
 
 
103
  DESTINATION_FRAME_TARGET = total_frames_brutos - 1
104
 
105
- base_ltx_params = {"guidance_scale": 2.0, "stg_scale": 0.025, "rescaling_scale": 0.15, "num_inference_steps": 20}
106
-
107
- # --- [INÍCIO DA CORREÇÃO] ---
108
- # Lógica robusta para extrair caminhos de arquivo da lista de keyframes.
109
- keyframe_paths = []
110
- for item in keyframes:
111
- if isinstance(item, str):
112
- keyframe_paths.append(item)
113
- elif isinstance(item, tuple) and len(item) > 0:
114
- keyframe_paths.append(item[0]) # Assume que o caminho está no primeiro elemento da tupla
115
- elif hasattr(item, 'name'):
116
- keyframe_paths.append(item.name)
117
- else:
118
- logger.warning(f"Item na lista de keyframes com tipo inesperado e sem atributo '.name': {type(item)}")
119
- # --- [FIM DA CORREÇÃO] ---
120
 
121
- story_history = ""
 
 
 
 
 
122
  eco_latent_for_next_loop = None
123
  dejavu_latent_for_next_loop = None
124
- raw_latent_fragments = []
125
-
126
- # --- ATO I: GERAÇÃO CAUSAL PURA (LOOP DE FRAGMENTOS) ---
 
 
 
 
 
 
127
  for i in range(num_transitions_to_generate):
128
  fragment_index = i + 1
129
- current_step += 1
130
- progress(current_step / TOTAL_STEPS, desc=f"Gerando Fragmento Causal {fragment_index}/{num_transitions_to_generate}")
131
 
 
132
  past_keyframe_path = keyframe_paths[i - 1] if i > 0 else keyframe_paths[i]
133
  start_keyframe_path = keyframe_paths[i]
134
  destination_keyframe_path = keyframe_paths[i + 1]
135
  future_story_prompt = storyboard[i + 1] if (i + 1) < len(storyboard) else "A cena final."
 
136
  decision = gemini_singleton.get_cinematic_decision(
137
  global_prompt, story_history, past_keyframe_path, start_keyframe_path, destination_keyframe_path,
138
- storyboard[i - 1] if i > 0 else "O início.", storyboard[i], future_story_prompt)
 
139
  transition_type, motion_prompt = decision["transition_type"], decision["motion_prompt"]
140
  story_history += f"\n- Ato {fragment_index}: {motion_prompt}"
141
 
142
- expected_height, expected_width = video_resolution, video_resolution
143
- downscale_factor = 2 / 3
144
- downscaled_height = self._quantize_to_multiple(int(expected_height * downscale_factor), 8)
145
- downscaled_width = self._quantize_to_multiple(int(expected_width * downscale_factor), 8)
146
- target_resolution_tuple = (downscaled_height, downscaled_width)
147
-
148
  conditioning_items = []
 
 
149
  if eco_latent_for_next_loop is None:
 
150
  img_start = self._preprocess_image_for_latent_conversion(Image.open(start_keyframe_path).convert("RGB"), target_resolution_tuple)
151
  conditioning_items.append(LatentConditioningItem(self.pil_to_latent(img_start), 0, 1.0))
152
  else:
 
153
  conditioning_items.append(LatentConditioningItem(eco_latent_for_next_loop, 0, 1.0))
 
154
  conditioning_items.append(LatentConditioningItem(dejavu_latent_for_next_loop, DEJAVU_FRAME_TARGET, handler_strength))
 
 
155
  img_dest = self._preprocess_image_for_latent_conversion(Image.open(destination_keyframe_path).convert("RGB"), target_resolution_tuple)
156
  conditioning_items.append(LatentConditioningItem(self.pil_to_latent(img_dest), DESTINATION_FRAME_TARGET, destination_convergence_strength))
157
-
 
 
158
  current_ltx_params = {**base_ltx_params, "motion_prompt": motion_prompt}
159
- latents_brutos, _ = self._generate_latent_tensor_internal(conditioning_items, current_ltx_params, target_resolution_tuple, total_frames_brutos)
160
-
 
 
 
 
161
  last_trim = latents_brutos[:, :, -(latents_a_podar+1):, :, :].clone()
162
- eco_latent_for_next_loop = last_trim[:, :, :ECO_LATENT_CHUNKS, :, :].clone()
163
  dejavu_latent_for_next_loop = last_trim[:, :, -1:, :, :].clone()
 
164
  latents_video = latents_brutos[:, :, :-(latents_a_podar-1), :, :].clone()
165
  latents_video = latents_video[:, :, 1:, :, :]
166
 
 
 
 
 
167
  if transition_type == "cut":
168
- eco_latent_for_next_loop, dejavu_latent_for_next_loop = None, None
 
 
169
 
170
- raw_latent_fragments.append(latents_video)
 
 
 
171
 
172
- # --- ATO II: PÓS-PRODUÇÃO LATENTE GLOBAL (CONDICIONAL) ---
173
  current_step += 1
174
  progress(current_step / TOTAL_STEPS, desc="Unificação Causal (Concatenação)...")
175
- tensors_on_main_device = [frag.to(self.device) for frag in raw_latent_fragments]
176
- processed_latents = torch.cat(tensors_on_main_device, dim=2)
177
- del raw_latent_fragments, tensors_on_main_device; gc.collect(); torch.cuda.empty_cache()
 
 
 
 
 
 
 
 
178
 
 
 
 
179
  if use_refiner:
180
  current_step += 1
181
  progress(current_step / TOTAL_STEPS, desc="Polimento Global (Denoise)...")
@@ -188,60 +226,63 @@ class Deformes4DEngine:
188
  else:
189
  logger.info("Etapa de refinamento desativada.")
190
 
191
- # --- ATO III: RENDERIZAÇÃO E FINALIZAÇÃO ---
192
  base_name = f"movie_{int(time.time())}"
193
  current_step += 1
194
  progress(current_step / TOTAL_STEPS, desc="Renderização (em lotes)...")
195
- intermediate_video_path = os.path.join(self.workspace_dir, f"{base_name}_intermediate.mp4")
196
-
197
- with imageio.get_writer(intermediate_video_path, fps=FPS, codec='libx264', quality=8, output_params=['-pix_fmt', 'yuv420p']) as writer:
198
- chunk_size = 15 if use_upscaler else 30
199
- latent_chunks = torch.split(processed_latents, chunk_size, dim=2)
200
-
201
- for i, latent_chunk in enumerate(latent_chunks):
202
- logger.info(f"Processando e renderizando lote {i+1}/{len(latent_chunks)}...")
203
-
204
- processed_chunk = self.upscale_latents(latent_chunk) if use_upscaler else latent_chunk
205
- pixel_tensor_chunk = self.latents_to_pixels(processed_chunk)
206
-
207
- pixel_tensor_chunk = pixel_tensor_chunk.squeeze(0).permute(1, 2, 3, 0)
208
- pixel_tensor_chunk = (pixel_tensor_chunk.clamp(-1, 1) + 1) / 2.0
209
- video_np_chunk = (pixel_tensor_chunk.detach().cpu().float().numpy() * 255).astype(np.uint8)
210
-
211
- for frame in video_np_chunk:
212
- writer.append_data(frame)
213
-
214
- del latent_chunk, processed_chunk, pixel_tensor_chunk, video_np_chunk
215
- gc.collect()
216
- torch.cuda.empty_cache()
217
-
218
- del processed_latents; gc.collect(); torch.cuda.empty_cache()
219
- logger.info(f"Vídeo intermediário renderizado em: {intermediate_video_path}")
220
-
221
- final_video_path = os.path.join(self.workspace_dir, f"{base_name}_FINAL.mp4")
222
 
223
  if use_hd:
224
  current_step += 1
225
  progress(current_step / TOTAL_STEPS, desc="Masterização Final (HD)...")
226
  try:
227
  hd_specialist_singleton.process_video(
228
- input_video_path=intermediate_video_path,
229
- output_video_path=final_video_path,
230
- prompt=global_prompt
231
  )
232
  except Exception as e:
233
  logger.error(f"Falha na masterização HD: {e}. Usando vídeo de qualidade padrão.")
234
- os.rename(intermediate_video_path, final_video_path)
235
  else:
236
- logger.info("Etapa de masterização HD desativada.")
237
- os.rename(intermediate_video_path, final_video_path)
 
 
 
238
 
239
- if use_audio:
240
- logger.warning("Geração de áudio solicitada, mas está desativada nesta versão do código.")
241
 
242
- logger.info(f"Processo concluído! Vídeo final salvo em: {final_video_path}")
243
- yield {"final_path": final_video_path}
 
 
 
 
 
 
 
 
 
 
 
 
 
244
 
 
 
 
 
 
 
 
 
 
245
  def refine_latents(self, latents: torch.Tensor, fps: int = 24, denoise_strength: float = 0.35, refine_steps: int = 12, motion_prompt: str = "...", **kwargs) -> torch.Tensor:
246
  logger.info(f"Refinando tensor latente com shape {latents.shape}.")
247
  _, _, num_latent_frames, latent_h, latent_w = latents.shape
@@ -269,13 +310,17 @@ class Deformes4DEngine:
269
  return upscaler_specialist_singleton.upscale(latents)
270
 
271
  def _generate_latent_tensor_internal(self, conditioning_items, ltx_params, target_resolution, total_frames_to_generate):
272
- kwargs = {
273
- **ltx_params, 'width': target_resolution[1], 'height': target_resolution[0],
274
  'video_total_frames': total_frames_to_generate, 'video_fps': 24,
275
  'current_fragment_index': int(time.time()), 'conditioning_items_data': conditioning_items
276
  }
277
- return self.ltx_manager.generate_latent_fragment(**kwargs)
 
 
 
278
 
 
279
  def _quantize_to_multiple(self, n, m):
280
  if m == 0: return n
281
  quantized = int(round(n / m) * m)
 
27
  from hd_specialist import hd_specialist_singleton
28
  from ltx_video.models.autoencoders.causal_video_autoencoder import CausalVideoAutoencoder
29
  from ltx_video.models.autoencoders.vae_encode import vae_encode, vae_decode
30
+ from audio_specialist import audio_specialist_singleton
31
 
32
  logger = logging.getLogger(__name__)
33
 
 
79
  tensor = torch.from_numpy(image_np).permute(2, 0, 1).unsqueeze(0).unsqueeze(2)
80
  tensor = (tensor * 2.0) - 1.0
81
  return self.pixels_to_latents(tensor)
82
+
83
+
84
  # --- NÚCLEO DA LÓGICA ADUC-SDR ---
85
+ def generate_full_movie_old(self, keyframes: list, global_prompt: str, storyboard: list,
86
  seconds_per_fragment: float, trim_percent: int,
87
  handler_strength: float, destination_convergence_strength: float,
88
  use_upscaler: bool, use_refiner: bool, use_hd: bool, use_audio: bool,
89
  video_resolution: int, use_continuity_director: bool,
90
  progress: gr.Progress = gr.Progress()):
91
 
92
+ # 1. Definição dos Parâmetros da Geração com base na Tese
 
 
 
93
  FPS = 24
94
  FRAMES_PER_LATENT_CHUNK = 8
95
  ECO_LATENT_CHUNKS = 2
96
 
97
  total_frames_brutos = self._quantize_to_multiple(int(seconds_per_fragment * FPS), FRAMES_PER_LATENT_CHUNK)
98
+ total_latents_brutos = total_frames_brutos // FRAMES_PER_LATENT_CHUNK
99
+
100
  frames_a_podar = self._quantize_to_multiple(int(total_frames_brutos * (trim_percent / 100)), FRAMES_PER_LATENT_CHUNK)
101
  latents_a_podar = frames_a_podar // FRAMES_PER_LATENT_CHUNK
102
 
103
+ if total_latents_brutos <= latents_a_podar:
104
+ raise gr.Error(f"A porcentagem de poda ({trim_percent}%) é muito alta. Reduza-a ou aumente a duração.")
105
+
106
+ DEJAVU_FRAME_TARGET = frames_a_podar - 1
107
  DESTINATION_FRAME_TARGET = total_frames_brutos - 1
108
 
109
+ logger.info("--- CONFIGURAÇÃO DA GERAÇÃO ADUC-SDR ---")
110
+ logger.info(f"Total de Latents por Geração Exploratória (V_bruto): {total_latents_brutos} ({total_frames_brutos} frames)")
111
+ logger.info(f"Latents a serem descartados (Poda Causal): {latents_a_podar} ({frames_a_podar} frames)")
112
+ logger.info(f"Chunks Latentes do Eco Causal (C): {ECO_LATENT_CHUNKS}")
113
+ logger.info(f"Frame alvo do Déjà-Vu (D): {DEJAVU_FRAME_TARGET}")
114
+ logger.info(f"Frame alvo do Destino (K): {DESTINATION_FRAME_TARGET}")
115
+ logger.info("------------------------------------------")
 
 
 
 
 
 
 
 
116
 
117
+ # 2. Inicialização do Estado
118
+ base_ltx_params = {"guidance_scale": 2.0, "stg_scale": 0.025, "rescaling_scale": 0.15, "num_inference_steps": 20, "image_cond_noise_scale": 0.00}
119
+ keyframe_paths = [item[0] if isinstance(item, tuple) else item for item in keyframes]
120
+ video_clips_paths, story_history = [], ""
121
+ target_resolution_tuple = (video_resolution, video_resolution)
122
+
123
  eco_latent_for_next_loop = None
124
  dejavu_latent_for_next_loop = None
125
+
126
+ latent_fragments[]
127
+
128
+ if len(keyframe_paths) < 2:
129
+ raise gr.Error(f"A geração requer no mínimo 2 keyframes. Você forneceu {len(keyframe_paths)}.")
130
+
131
+ num_transitions_to_generate = len(keyframe_paths) - 1
132
+
133
+ # 3. Loop Principal de Geração de Fragmentos
134
  for i in range(num_transitions_to_generate):
135
  fragment_index = i + 1
136
+ logger.info(f"--- INICIANDO FRAGMENTO {fragment_index}/{num_transitions_to_generate} ---")
137
+ progress(fragment_index / num_transitions_to_generate, desc=f"Produzindo Transição {fragment_index}/{num_transitions_to_generate}")
138
 
139
+ # 3.1. Consulta ao Maestro (Γ) para obter a intenção (Pᵢ)
140
  past_keyframe_path = keyframe_paths[i - 1] if i > 0 else keyframe_paths[i]
141
  start_keyframe_path = keyframe_paths[i]
142
  destination_keyframe_path = keyframe_paths[i + 1]
143
  future_story_prompt = storyboard[i + 1] if (i + 1) < len(storyboard) else "A cena final."
144
+
145
  decision = gemini_singleton.get_cinematic_decision(
146
  global_prompt, story_history, past_keyframe_path, start_keyframe_path, destination_keyframe_path,
147
+ storyboard[i - 1] if i > 0 else "O início.", storyboard[i], future_story_prompt
148
+ )
149
  transition_type, motion_prompt = decision["transition_type"], decision["motion_prompt"]
150
  story_history += f"\n- Ato {fragment_index}: {motion_prompt}"
151
 
152
+ # 3.2. Montagem das Âncoras para a Fórmula Canônica Ψ({C, D, K}, P)
 
 
 
 
 
153
  conditioning_items = []
154
+ logger.info(" [Ψ.1] Montando âncoras causais...")
155
+
156
  if eco_latent_for_next_loop is None:
157
+ logger.info(" - Primeiro fragmento: Usando Keyframe inicial como âncora de partida.")
158
  img_start = self._preprocess_image_for_latent_conversion(Image.open(start_keyframe_path).convert("RGB"), target_resolution_tuple)
159
  conditioning_items.append(LatentConditioningItem(self.pil_to_latent(img_start), 0, 1.0))
160
  else:
161
+ logger.info(" - Âncora 1: Eco Causal (C) - Herança do passado.")
162
  conditioning_items.append(LatentConditioningItem(eco_latent_for_next_loop, 0, 1.0))
163
+ logger.info(" - Âncora 2: Déjà-Vu (D) - Memória de um futuro idealizado.")
164
  conditioning_items.append(LatentConditioningItem(dejavu_latent_for_next_loop, DEJAVU_FRAME_TARGET, handler_strength))
165
+
166
+ logger.info(" - Âncora 3: Destino (K) - Âncora geométrica/narrativa.")
167
  img_dest = self._preprocess_image_for_latent_conversion(Image.open(destination_keyframe_path).convert("RGB"), target_resolution_tuple)
168
  conditioning_items.append(LatentConditioningItem(self.pil_to_latent(img_dest), DESTINATION_FRAME_TARGET, destination_convergence_strength))
169
+
170
+ # 3.3. Execução da Câmera (Ψ): Geração Exploratória para criar V_bruto
171
+ logger.info(f" [Ψ.2] Câmera (Ψ) executando a geração exploratória de {total_latents_brutos} chunks latentes...")
172
  current_ltx_params = {**base_ltx_params, "motion_prompt": motion_prompt}
173
+ latents_brutos = self._generate_latent_tensor_internal(conditioning_items, current_ltx_params, target_resolution_tuple, total_frames_brutos)
174
+ logger.info(f" - Geração concluída. Tensor latente bruto (V_bruto) criado com shape: {latents_brutos.shape}.")
175
+
176
+ # 3.4. Execução do Destilador (Δ): Implementação do Ciclo de Poda Causal (com workaround empírico)
177
+ logger.info(f" [Δ] Destilador (Δ) executando o Ciclo de Poda Causal...")
178
+
179
  last_trim = latents_brutos[:, :, -(latents_a_podar+1):, :, :].clone()
180
+ eco_latent_for_next_loop = last_trim[:, :, :2, :, :].clone()
181
  dejavu_latent_for_next_loop = last_trim[:, :, -1:, :, :].clone()
182
+
183
  latents_video = latents_brutos[:, :, :-(latents_a_podar-1), :, :].clone()
184
  latents_video = latents_video[:, :, 1:, :, :]
185
 
186
+ logger.info(f" [Δ] latents_video {latents_video.shape}")
187
+ logger.info(f" - (Δ.1) Déjà-Vu (D) destilado. Shape: {dejavu_latent_for_next_loop.shape}")
188
+ logger.info(f" - (Δ.2) Eco Causal (C) extraído. Shape: {eco_latent_for_next_loop.shape}")
189
+
190
  if transition_type == "cut":
191
+ logger.warning(" - DECISÃO DO MAESTRO: Corte ('cut'). Resetando a memória causal (Eco e Déjà-Vu).")
192
+ eco_latent_for_next_loop = None
193
+ dejavu_latent_for_next_loop = None
194
 
195
+ if use_upscaler:
196
+ latents_video = self.upscale_latents(latents_video)
197
+
198
+ latent_fragments.append(latents_video)
199
 
 
200
  current_step += 1
201
  progress(current_step / TOTAL_STEPS, desc="Unificação Causal (Concatenação)...")
202
+
203
+ logger.info("--- CONCATENANDO TODOS OS FRAGMENTOS LATENTES ---")
204
+ tensors_para_concatenar = []
205
+ for idx, tensor_frag in enumerate(latent_fragments):
206
+ # Move cada tensor para o dispositivo de destino antes de adicioná-lo à lista.
207
+ target_device = self.device
208
+ tensor_on_target_device = tensor_frag.to(target_device)
209
+ if idx < len(latent_fragments) - 1:
210
+ tensors_para_concatenar.append(tensor_on_target_device[:, :, :-1, :, :])
211
+ else:
212
+ tensors_para_concatenar.append(tensor_on_target_device)
213
 
214
+ processed_latents = torch.cat(tensors_para_concatenar, dim=2)
215
+ logger.info(f"Concatenação concluída. Shape final do tensor latente: {final_concatenated_latents.shape}")
216
+
217
  if use_refiner:
218
  current_step += 1
219
  progress(current_step / TOTAL_STEPS, desc="Polimento Global (Denoise)...")
 
226
  else:
227
  logger.info("Etapa de refinamento desativada.")
228
 
229
+
230
  base_name = f"movie_{int(time.time())}"
231
  current_step += 1
232
  progress(current_step / TOTAL_STEPS, desc="Renderização (em lotes)...")
233
+
234
+ if use_audio:
235
+ video_path = self._generate_video_and_audio_from_latents(processed_latents, global_prompt, base_name)
236
+ else:
237
+ video_path = os.path.join(self.workspace_dir, f"{base_name}_silent.mp4")
238
+ logger.info("Etapa de sonoplastia desativada.")
239
+ pixel_tensor = self.latents_to_pixels(processed_latents)
240
+ self.save_video_from_tensor(pixel_tensor, video_path, fps=24)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
241
 
242
  if use_hd:
243
  current_step += 1
244
  progress(current_step / TOTAL_STEPS, desc="Masterização Final (HD)...")
245
  try:
246
  hd_specialist_singleton.process_video(
247
+ input_video_path=video_path,
248
+ output_video_path=video_path,
249
+ prompt=" "
250
  )
251
  except Exception as e:
252
  logger.error(f"Falha na masterização HD: {e}. Usando vídeo de qualidade padrão.")
 
253
  else:
254
+ logger.info("Etapa de edicao HD desativada.")
255
+
256
+
257
+ logger.info(f"Processo concluído! Vídeo final salvo em: {video_path}")
258
+ yield {"final_path": video_path}
259
 
 
 
260
 
261
+ def _generate_video_and_audio_from_latents(self, latent_tensor, audio_prompt, base_name):
262
+ silent_video_path = os.path.join(self.workspace_dir, f"{base_name}_silent.mp4")
263
+ pixel_tensor = self.latents_to_pixels(latent_tensor)
264
+ self.save_video_from_tensor(pixel_tensor, silent_video_path, fps=24)
265
+ del pixel_tensor; gc.collect()
266
+
267
+ try:
268
+ result = subprocess.run(
269
+ ["ffprobe", "-v", "error", "-show_entries", "format=duration", "-of", "default=noprint_wrappers=1:nokey=1", silent_video_path],
270
+ capture_output=True, text=True, check=True)
271
+ frag_duration = float(result.stdout.strip())
272
+ except (subprocess.CalledProcessError, ValueError, FileNotFoundError):
273
+ logger.warning(f"ffprobe falhou em {os.path.basename(silent_video_path)}. Calculando duração manualmente.")
274
+ num_pixel_frames = latent_tensor.shape[2] * 8
275
+ frag_duration = num_pixel_frames / 24.0
276
 
277
+ video_with_audio_path = audio_specialist_singleton.generate_audio_for_video(
278
+ video_path=silent_video_path, prompt=audio_prompt,
279
+ duration_seconds=frag_duration)
280
+
281
+ if os.path.exists(silent_video_path):
282
+ os.remove(silent_video_path)
283
+ return video_with_audio_path
284
+
285
+
286
  def refine_latents(self, latents: torch.Tensor, fps: int = 24, denoise_strength: float = 0.35, refine_steps: int = 12, motion_prompt: str = "...", **kwargs) -> torch.Tensor:
287
  logger.info(f"Refinando tensor latente com shape {latents.shape}.")
288
  _, _, num_latent_frames, latent_h, latent_w = latents.shape
 
310
  return upscaler_specialist_singleton.upscale(latents)
311
 
312
  def _generate_latent_tensor_internal(self, conditioning_items, ltx_params, target_resolution, total_frames_to_generate):
313
+ final_ltx_params = {
314
+ **ltx_params, 'width': target_resolution[0], 'height': target_resolution[1],
315
  'video_total_frames': total_frames_to_generate, 'video_fps': 24,
316
  'current_fragment_index': int(time.time()), 'conditioning_items_data': conditioning_items
317
  }
318
+ new_full_latents, _ = self.ltx_manager.generate_latent_fragment(**final_ltx_params)
319
+ gc.collect()
320
+ torch.cuda.empty_cache()
321
+ return new_full_latents
322
 
323
+
324
  def _quantize_to_multiple(self, n, m):
325
  if m == 0: return n
326
  quantized = int(round(n / m) * m)