AdritRao's picture
Upload 62 files
a3290d1
raw
history blame
17 kB
"""
@author: louisblankemeier
"""
import math
import os
import shutil
import zipfile
from pathlib import Path
from time import time
from typing import Union
import nibabel as nib
import numpy as np
import pandas as pd
import wget
from PIL import Image
from totalsegmentatorv2.python_api import totalsegmentator
from comp2comp.inference_class_base import InferenceClass
from comp2comp.io import io_utils
from comp2comp.models.models import Models
from comp2comp.spine import spine_utils
from comp2comp.visualization.dicom import to_dicom
# from totalsegmentator.libs import (
# download_pretrained_weights,
# nostdout,
# setup_nnunet,
# )
class SpineSegmentation(InferenceClass):
"""Spine segmentation."""
def __init__(self, model_name, save=True):
super().__init__()
self.model_name = model_name
self.save_segmentations = save
def __call__(self, inference_pipeline):
# inference_pipeline.dicom_series_path = self.input_path
self.output_dir = inference_pipeline.output_dir
self.output_dir_segmentations = os.path.join(self.output_dir, "segmentations/")
if not os.path.exists(self.output_dir_segmentations):
os.makedirs(self.output_dir_segmentations)
self.model_dir = inference_pipeline.model_dir
# seg, mv = self.spine_seg(
# os.path.join(self.output_dir_segmentations, "converted_dcm.nii.gz"),
# self.output_dir_segmentations + "spine.nii.gz",
# inference_pipeline.model_dir,
# )
os.environ["TOTALSEG_WEIGHTS_PATH"] = self.model_dir
seg = totalsegmentator(
input=os.path.join(self.output_dir_segmentations, "converted_dcm.nii.gz"),
output=os.path.join(self.output_dir_segmentations, "segmentation.nii"),
task_ids=[292],
ml=True,
nr_thr_resamp=1,
nr_thr_saving=6,
fast=False,
nora_tag="None",
preview=False,
task="total",
# roi_subset=[
# "vertebrae_T12",
# "vertebrae_L1",
# "vertebrae_L2",
# "vertebrae_L3",
# "vertebrae_L4",
# "vertebrae_L5",
# ],
roi_subset=None,
statistics=False,
radiomics=False,
crop_path=None,
body_seg=False,
force_split=False,
output_type="nifti",
quiet=False,
verbose=False,
test=0,
skip_saving=True,
device="gpu",
license_number=None,
statistics_exclude_masks_at_border=True,
no_derived_masks=False,
v1_order=False,
)
mv = nib.load(
os.path.join(self.output_dir_segmentations, "converted_dcm.nii.gz")
)
# inference_pipeline.segmentation = nib.load(
# os.path.join(self.output_dir_segmentations, "segmentation.nii")
# )
inference_pipeline.segmentation = seg
inference_pipeline.medical_volume = mv
inference_pipeline.save_segmentations = self.save_segmentations
return {}
def setup_nnunet_c2c(self, model_dir: Union[str, Path]):
"""Adapted from TotalSegmentator."""
model_dir = Path(model_dir)
config_dir = model_dir / Path("." + self.model_name)
(config_dir / "nnunet/results/nnUNet/3d_fullres").mkdir(
exist_ok=True, parents=True
)
(config_dir / "nnunet/results/nnUNet/2d").mkdir(exist_ok=True, parents=True)
weights_dir = config_dir / "nnunet/results"
self.weights_dir = weights_dir
os.environ["nnUNet_raw_data_base"] = str(
weights_dir
) # not needed, just needs to be an existing directory
os.environ["nnUNet_preprocessed"] = str(
weights_dir
) # not needed, just needs to be an existing directory
os.environ["RESULTS_FOLDER"] = str(weights_dir)
def download_spine_model(self, model_dir: Union[str, Path]):
download_dir = Path(
os.path.join(
self.weights_dir,
"nnUNet/3d_fullres/Task252_Spine/nnUNetTrainerV2_ep4000_nomirror__nnUNetPlansv2.1",
)
)
fold_0_path = download_dir / "fold_0"
if not os.path.exists(fold_0_path):
download_dir.mkdir(parents=True, exist_ok=True)
wget.download(
"https://huggingface.co/louisblankemeier/spine_v1/resolve/main/fold_0.zip",
out=os.path.join(download_dir, "fold_0.zip"),
)
with zipfile.ZipFile(
os.path.join(download_dir, "fold_0.zip"), "r"
) as zip_ref:
zip_ref.extractall(download_dir)
os.remove(os.path.join(download_dir, "fold_0.zip"))
wget.download(
"https://huggingface.co/louisblankemeier/spine_v1/resolve/main/plans.pkl",
out=os.path.join(download_dir, "plans.pkl"),
)
print("Spine model downloaded.")
else:
print("Spine model already downloaded.")
def spine_seg(
self, input_path: Union[str, Path], output_path: Union[str, Path], model_dir
):
"""Run spine segmentation.
Args:
input_path (Union[str, Path]): Input path.
output_path (Union[str, Path]): Output path.
"""
print("Segmenting spine...")
st = time()
os.environ["SCRATCH"] = self.model_dir
os.environ["TOTALSEG_WEIGHTS_PATH"] = self.model_dir
# Setup nnunet
model = "3d_fullres"
folds = [0]
trainer = "nnUNetTrainerV2_ep4000_nomirror"
crop_path = None
task_id = [252]
if self.model_name == "ts_spine":
setup_nnunet()
download_pretrained_weights(task_id[0])
elif self.model_name == "stanford_spine_v0.0.1":
self.setup_nnunet_c2c(model_dir)
self.download_spine_model(model_dir)
else:
raise ValueError("Invalid model name.")
if not self.save_segmentations:
output_path = None
from totalsegmentator.nnunet import nnUNet_predict_image
with nostdout():
img, seg = nnUNet_predict_image(
input_path,
output_path,
task_id,
model=model,
folds=folds,
trainer=trainer,
tta=False,
multilabel_image=True,
resample=1.5,
crop=None,
crop_path=crop_path,
task_name="total",
nora_tag="None",
preview=False,
nr_threads_resampling=1,
nr_threads_saving=6,
quiet=False,
verbose=False,
test=0,
)
end = time()
# Log total time for spine segmentation
print(f"Total time for spine segmentation: {end-st:.2f}s.")
if self.model_name == "stanford_spine_v0.0.1":
seg_data = seg.get_fdata()
# subtract 17 from seg values except for 0
seg_data = np.where(seg_data == 0, 0, seg_data - 17)
seg = nib.Nifti1Image(seg_data, seg.affine, seg.header)
return seg, img
class AxialCropper(InferenceClass):
"""Crop the CT image (medical_volume) and segmentation based on user-specified
lower and upper levels of the spine.
"""
def __init__(self, lower_level: str = "L5", upper_level: str = "L1", save=True):
"""
Args:
lower_level (str, optional): Lower level of the spine. Defaults to "L5".
upper_level (str, optional): Upper level of the spine. Defaults to "L1".
save (bool, optional): Save cropped image and segmentation. Defaults to True.
Raises:
ValueError: If lower_level or upper_level is not a valid spine level.
"""
super().__init__()
self.lower_level = lower_level
self.upper_level = upper_level
ts_spine_full_model = Models.model_from_name("ts_spine_full")
categories = ts_spine_full_model.categories
try:
self.lower_level_index = categories[self.lower_level]
self.upper_level_index = categories[self.upper_level]
except KeyError:
raise ValueError("Invalid spine level.") from None
self.save = save
def __call__(self, inference_pipeline):
"""
First dim goes from L to R.
Second dim goes from P to A.
Third dim goes from I to S.
"""
segmentation = inference_pipeline.segmentation
segmentation_data = segmentation.get_fdata()
upper_level_index = np.where(segmentation_data == self.upper_level_index)[
2
].max()
lower_level_index = np.where(segmentation_data == self.lower_level_index)[
2
].min()
segmentation = segmentation.slicer[:, :, lower_level_index:upper_level_index]
inference_pipeline.segmentation = segmentation
medical_volume = inference_pipeline.medical_volume
medical_volume = medical_volume.slicer[
:, :, lower_level_index:upper_level_index
]
inference_pipeline.medical_volume = medical_volume
if self.save:
nib.save(
segmentation,
os.path.join(
inference_pipeline.output_dir, "segmentations", "spine.nii.gz"
),
)
nib.save(
medical_volume,
os.path.join(
inference_pipeline.output_dir,
"segmentations",
"converted_dcm.nii.gz",
),
)
return {}
class SpineComputeROIs(InferenceClass):
def __init__(self, spine_model):
super().__init__()
self.spine_model_name = spine_model
self.spine_model_type = Models.model_from_name(self.spine_model_name)
def __call__(self, inference_pipeline):
# Compute ROIs
inference_pipeline.spine_model_type = self.spine_model_type
(spine_hus, rois, segmentation_hus, centroids_3d) = spine_utils.compute_rois(
inference_pipeline.segmentation,
inference_pipeline.medical_volume,
self.spine_model_type,
)
inference_pipeline.spine_hus = spine_hus
inference_pipeline.segmentation_hus = segmentation_hus
inference_pipeline.rois = rois
inference_pipeline.centroids_3d = centroids_3d
return {}
class SpineMetricsSaver(InferenceClass):
"""Save metrics to a CSV file."""
def __init__(self):
super().__init__()
def __call__(self, inference_pipeline):
"""Save metrics to a CSV file."""
self.spine_hus = inference_pipeline.spine_hus
self.seg_hus = inference_pipeline.segmentation_hus
self.output_dir = inference_pipeline.output_dir
self.csv_output_dir = os.path.join(self.output_dir, "metrics")
if not os.path.exists(self.csv_output_dir):
os.makedirs(self.csv_output_dir, exist_ok=True)
self.save_results()
if hasattr(inference_pipeline, "dicom_ds"):
if not os.path.exists(os.path.join(self.output_dir, "dicom_metadata.csv")):
io_utils.write_dicom_metadata_to_csv(
inference_pipeline.dicom_ds,
os.path.join(self.output_dir, "dicom_metadata.csv"),
)
return {}
def save_results(self):
"""Save results to a CSV file."""
df = pd.DataFrame(columns=["Level", "ROI HU", "Seg HU"])
for i, level in enumerate(self.spine_hus):
hu = self.spine_hus[level]
seg_hu = self.seg_hus[level]
row = [level, hu, seg_hu]
df.loc[i] = row
df = df.iloc[::-1]
df.to_csv(os.path.join(self.csv_output_dir, "spine_metrics.csv"), index=False)
class SpineFindDicoms(InferenceClass):
def __init__(self):
super().__init__()
def __call__(self, inference_pipeline):
inferior_superior_centers = spine_utils.find_spine_dicoms(
inference_pipeline.centroids_3d,
)
spine_utils.save_nifti_select_slices(
inference_pipeline.output_dir, inferior_superior_centers
)
inference_pipeline.dicom_file_paths = [
str(center) for center in inferior_superior_centers
]
inference_pipeline.names = list(inference_pipeline.rois.keys())
inference_pipeline.dicom_file_names = list(inference_pipeline.rois.keys())
inference_pipeline.inferior_superior_centers = inferior_superior_centers
return {}
class SpineCoronalSagittalVisualizer(InferenceClass):
def __init__(self, format="png"):
super().__init__()
self.format = format
def __call__(self, inference_pipeline):
output_path = inference_pipeline.output_dir
spine_model_type = inference_pipeline.spine_model_type
img_sagittal, img_coronal = spine_utils.visualize_coronal_sagittal_spine(
inference_pipeline.segmentation.get_fdata(),
list(inference_pipeline.rois.values()),
inference_pipeline.medical_volume.get_fdata(),
list(inference_pipeline.centroids_3d.values()),
output_path,
spine_hus=inference_pipeline.spine_hus,
seg_hus=inference_pipeline.segmentation_hus,
model_type=spine_model_type,
pixel_spacing=inference_pipeline.pixel_spacing_list,
format=self.format,
)
inference_pipeline.spine_vis_sagittal = img_sagittal
inference_pipeline.spine_vis_coronal = img_coronal
inference_pipeline.spine = True
if not inference_pipeline.save_segmentations:
shutil.rmtree(os.path.join(output_path, "segmentations"))
return {}
class SpineReport(InferenceClass):
def __init__(self, format="png"):
super().__init__()
self.format = format
def __call__(self, inference_pipeline):
sagittal_image = inference_pipeline.spine_vis_sagittal
coronal_image = inference_pipeline.spine_vis_coronal
# concatenate these numpy arrays laterally
img = np.concatenate((coronal_image, sagittal_image), axis=1)
output_path = os.path.join(
inference_pipeline.output_dir, "images", "spine_report"
)
if self.format == "png":
im = Image.fromarray(img)
im.save(output_path + ".png")
elif self.format == "dcm":
to_dicom(img, output_path + ".dcm")
return {}
class SpineMuscleAdiposeTissueReport(InferenceClass):
"""Spine muscle adipose tissue report class."""
def __init__(self):
super().__init__()
self.image_files = [
"spine_coronal.png",
"spine_sagittal.png",
"T12.png",
"L1.png",
"L2.png",
"L3.png",
"L4.png",
"L5.png",
]
def __call__(self, inference_pipeline):
image_dir = Path(inference_pipeline.output_dir) / "images"
self.generate_panel(image_dir)
return {}
def generate_panel(self, image_dir: Union[str, Path]):
"""Generate panel.
Args:
image_dir (Union[str, Path]): Path to the image directory.
"""
image_files = [os.path.join(image_dir, path) for path in self.image_files]
# construct a list which includes only the images that exist
image_files = [path for path in image_files if os.path.exists(path)]
im_cor = Image.open(image_files[0])
im_sag = Image.open(image_files[1])
im_cor_width = int(im_cor.width / im_cor.height * 512)
num_muscle_fat_cols = math.ceil((len(image_files) - 2) / 2)
width = (8 + im_cor_width + 8) + ((512 + 8) * num_muscle_fat_cols)
height = 1048
new_im = Image.new("RGB", (width, height))
index = 2
for j in range(8, height, 520):
for i in range(8 + im_cor_width + 8, width, 520):
try:
im = Image.open(image_files[index])
im.thumbnail((512, 512))
new_im.paste(im, (i, j))
index += 1
im.close()
except Exception:
continue
im_cor.thumbnail((im_cor_width, 512))
new_im.paste(im_cor, (8, 8))
im_sag.thumbnail((im_cor_width, 512))
new_im.paste(im_sag, (8, 528))
new_im.save(os.path.join(image_dir, "spine_muscle_adipose_tissue_report.png"))
im_cor.close()
im_sag.close()
new_im.close()