AdrienB134 commited on
Commit
8001e7f
1 Parent(s): 3083423
Files changed (2) hide show
  1. app.py +131 -58
  2. requirements.txt +6 -1
app.py CHANGED
@@ -1,63 +1,136 @@
 
 
 
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
- """
43
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
44
- """
45
- demo = gr.ChatInterface(
46
- respond,
47
- additional_inputs=[
48
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
49
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
50
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
51
- gr.Slider(
52
- minimum=0.1,
53
- maximum=1.0,
54
- value=0.95,
55
- step=0.05,
56
- label="Top-p (nucleus sampling)",
57
- ),
58
- ],
59
  )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60
 
 
 
61
 
62
  if __name__ == "__main__":
63
- demo.launch()
 
1
+ import os
2
+ import spaces
3
+
4
  import gradio as gr
5
+ import torch
6
+ from colpali_engine.models.paligemma_colbert_architecture import ColPali
7
+ from colpali_engine.trainer.retrieval_evaluator import CustomEvaluator
8
+ from colpali_engine.utils.colpali_processing_utils import (
9
+ process_images,
10
+ process_queries,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
  )
12
+ from pdf2image import convert_from_path
13
+ from PIL import Image
14
+ from torch.utils.data import DataLoader
15
+ from tqdm import tqdm
16
+ from transformers import AutoProcessor
17
+
18
+ # Load model
19
+ model_name = "vidore/colpali-v1.2"
20
+ token = os.environ.get("HF_TOKEN")
21
+ model = ColPali.from_pretrained(
22
+ "vidore/colpaligemma-3b-pt-448-base", torch_dtype=torch.bfloat16, device_map="cuda", token = token).eval()
23
+
24
+ model.load_adapter(model_name)
25
+ model = model.eval()
26
+ processor = AutoProcessor.from_pretrained(model_name, token = token)
27
+
28
+ mock_image = Image.new("RGB", (448, 448), (255, 255, 255))
29
+
30
+
31
+ @spaces.GPU
32
+ def search(query: str, ds, images, k):
33
+
34
+ device = "cuda:0" if torch.cuda.is_available() else "cpu"
35
+ if device != model.device:
36
+ model.to(device)
37
+
38
+ qs = []
39
+ with torch.no_grad():
40
+ batch_query = process_queries(processor, [query], mock_image)
41
+ batch_query = {k: v.to(device) for k, v in batch_query.items()}
42
+ embeddings_query = model(**batch_query)
43
+ qs.extend(list(torch.unbind(embeddings_query.to("cpu"))))
44
+
45
+ retriever_evaluator = CustomEvaluator(is_multi_vector=True)
46
+ scores = retriever_evaluator.evaluate(qs, ds)
47
+
48
+ top_k_indices = scores.argsort(axis=1)[0][-k:][::-1]
49
+
50
+ results = []
51
+ for idx in top_k_indices:
52
+ results.append((images[idx], f"Page {idx}"))
53
+
54
+ return results
55
+
56
+
57
+ def index(files, ds):
58
+ print("Converting files")
59
+ images = convert_files(files)
60
+ print(f"Files converted with {len(images)} images.")
61
+ return index_gpu(images, ds)
62
+
63
+
64
+
65
+ def convert_files(files):
66
+ images = []
67
+ for f in files:
68
+ images.extend(convert_from_path(f, thread_count=4))
69
+
70
+ if len(images) >= 150:
71
+ raise gr.Error("The number of images in the dataset should be less than 150.")
72
+ return images
73
+
74
+
75
+ @spaces.GPU
76
+ def index_gpu(images, ds):
77
+ """Example script to run inference with ColPali"""
78
+
79
+ # run inference - docs
80
+ dataloader = DataLoader(
81
+ images,
82
+ batch_size=4,
83
+ shuffle=False,
84
+ collate_fn=lambda x: process_images(processor, x),
85
+ )
86
+
87
+
88
+ device = "cuda:0" if torch.cuda.is_available() else "cpu"
89
+ if device != model.device:
90
+ model.to(device)
91
+
92
+
93
+ for batch_doc in tqdm(dataloader):
94
+ with torch.no_grad():
95
+ batch_doc = {k: v.to(device) for k, v in batch_doc.items()}
96
+ embeddings_doc = model(**batch_doc)
97
+ ds.extend(list(torch.unbind(embeddings_doc.to("cpu"))))
98
+ return f"Uploaded and converted {len(images)} pages", ds, images
99
+
100
+
101
+ def get_example():
102
+ return [[["climate_youth_magazine.pdf"], "How much tropical forest is cut annually ?"]]
103
+
104
+ with gr.Blocks(theme=gr.themes.Soft()) as demo:
105
+ gr.Markdown("# ColPali: Efficient Document Retrieval with Vision Language Models 📚")
106
+
107
+ with gr.Row():
108
+ with gr.Column(scale=2):
109
+ gr.Markdown("## 1️⃣ Upload PDFs")
110
+ file = gr.File(file_types=["pdf"], file_count="multiple", label="Upload PDFs")
111
+
112
+ convert_button = gr.Button("🔄 Index documents")
113
+ message = gr.Textbox("Files not yet uploaded", label="Status")
114
+ embeds = gr.State(value=[])
115
+ imgs = gr.State(value=[])
116
+
117
+ with gr.Column(scale=3):
118
+ gr.Markdown("## 2️⃣ Search")
119
+ query = gr.Textbox(placeholder="Enter your query here", label="Query")
120
+ k = gr.Slider(minimum=1, maximum=10, step=1, label="Number of results", value=5)
121
+
122
+ # with gr.Row():
123
+ # gr.Examples(
124
+ # examples=get_example(),
125
+ # inputs=[file, query],
126
+ # )
127
+
128
+ # Define the actions
129
+ search_button = gr.Button("🔍 Search", variant="primary")
130
+ output_gallery = gr.Gallery(label="Retrieved Documents", height=600, show_label=True)
131
 
132
+ convert_button.click(index, inputs=[file, embeds], outputs=[message, embeds, imgs])
133
+ search_button.click(search, inputs=[query, embeds, imgs, k], outputs=[output_gallery])
134
 
135
  if __name__ == "__main__":
136
+ demo.queue(max_size=10).launch(debug=True)
requirements.txt CHANGED
@@ -1 +1,6 @@
1
- huggingface_hub==0.22.2
 
 
 
 
 
 
1
+ huggingface_hub==0.22.2
2
+ colpali-engine==0.2.0
3
+ pdf2image
4
+ GPUtil
5
+ accelerate==0.30.1
6
+ mteb>=1.12.22