PEFTpyCODER / app.py
AdnanRiaz107's picture
Update app.py
fe42aca verified
import gradio as gr
from huggingface_hub import InferenceClient
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
# Set the random seed for reproducibility
torch.random.manual_seed(0)
# Load the model without specifying 'device_map' for CPU usage
model = AutoModelForCausalLM.from_pretrained(
"AdnanRiaz107/CodePhi-3-mini-0.1Klora",
torch_dtype="auto", # Use auto for dtype selection
trust_remote_code=True,
attn_implementation='eager',
#load_in_8bit= True,# Keep this if you want to use 'eager'
)
# Load the tokenizer
tokenizer = AutoTokenizer.from_pretrained("AdnanRiaz107/CodePhi-3-mini-0.1Klora")
# Create a text generation pipeline
pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
)
# Generation arguments
generation_args = {
"max_new_tokens": 500,
"return_full_text": False,
"temperature": 0.0,
"do_sample": False,
}
# Gradio interface function
def generate_response(input_text):
# Prepare the input for the model
messages = [{"role": "user", "content": input_text}]
# Generate output
output = pipe(messages, **generation_args)
return output[0]['generated_text']
# Create Gradio demo interface
demo = gr.Interface(
fn=generate_response,
inputs=gr.Textbox(
lines=2,
placeholder="Enter your question here...",
label="Your Input",
),
outputs=gr.Textbox(
label="Model Response",
placeholder="Response will be displayed here...",
),
title="AI Assistant for Python Code Generation",
description="Ask any question or request information, and the AI assistant will provide a response. Try asking about recipes, solving equations, or general inquiries.",
examples=[
["Can you provide ways to eat combinations of bananas and dragonfruits?"],
["What about solving the equation 2x + 3 = 7?"],
["Tell me about the history of the internet."],
],
theme="default" # You can change the theme to "compact", "default", "huggingface", etc.
)
if __name__ == "__main__":
demo.launch()