Upload dif.py
Browse files
dif.py
ADDED
@@ -0,0 +1,319 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import skimage.color
|
2 |
+
import matplotlib.pyplot as plt
|
3 |
+
import numpy as np
|
4 |
+
import cv2
|
5 |
+
import os
|
6 |
+
import time
|
7 |
+
import collections
|
8 |
+
|
9 |
+
class dif:
|
10 |
+
|
11 |
+
def __init__(self, directory_A, directory_B=None, similarity="normal", px_size=50, sort_output=False, show_output=False, show_progress=False, delete=False, silent_del=False):
|
12 |
+
"""
|
13 |
+
directory_A (str)......folder path to search for duplicate/similar images
|
14 |
+
directory_B (str)......second folder path to search for duplicate/similar images
|
15 |
+
similarity (str)......."normal" = searches for duplicates, recommended setting, MSE < 200
|
16 |
+
"high" = serached for exact duplicates, extremly sensitive to details, MSE < 0.1
|
17 |
+
"low" = searches for similar images, MSE < 1000
|
18 |
+
px_size (int)..........recommended not to change default value
|
19 |
+
resize images to px_size height x width (in pixels) before being compared
|
20 |
+
the higher the pixel size, the more computational ressources and time required
|
21 |
+
sort_output (bool).....False = adds the duplicate images to output dictionary in the order they were found
|
22 |
+
True = sorts the duplicate images in the output dictionars alphabetically
|
23 |
+
show_output (bool).....False = omits the output and doesn't show found images
|
24 |
+
True = shows duplicate/similar images found in output
|
25 |
+
show_progress (bool)...False = shows where your lengthy processing currently is
|
26 |
+
delete (bool)..........! please use with care, as this cannot be undone
|
27 |
+
lower resolution duplicate images that were found are automatically deleted
|
28 |
+
silent_del (bool)......! please use with care, as this cannot be undone
|
29 |
+
True = skips the asking for user confirmation when deleting lower resolution duplicate images
|
30 |
+
will only work if "delete" AND "silent_del" are both == True
|
31 |
+
|
32 |
+
OUTPUT (set)...........a dictionary with the filename of the duplicate images
|
33 |
+
and a set of lower resultion images of all duplicates
|
34 |
+
"""
|
35 |
+
start_time = time.time()
|
36 |
+
print("DifPy process initializing...", end="\r")
|
37 |
+
|
38 |
+
if directory_B != None:
|
39 |
+
# process both directories
|
40 |
+
dif._process_directory(directory_A)
|
41 |
+
dif._process_directory(directory_B)
|
42 |
+
else:
|
43 |
+
# process one directory
|
44 |
+
dif._process_directory(directory_A)
|
45 |
+
directory_B = directory_A
|
46 |
+
|
47 |
+
dif._validate_parameters(sort_output, show_output, show_progress, similarity, px_size, delete, silent_del)
|
48 |
+
|
49 |
+
if directory_B == directory_A:
|
50 |
+
result, lower_quality, total = dif._search_one_dir(directory_A,
|
51 |
+
similarity, px_size,
|
52 |
+
sort_output, show_output, show_progress)
|
53 |
+
else:
|
54 |
+
result, lower_quality, total = dif._search_two_dirs(directory_A, directory_B,
|
55 |
+
similarity, px_size,
|
56 |
+
sort_output, show_output, show_progress)
|
57 |
+
if sort_output == True:
|
58 |
+
result = collections.OrderedDict(sorted(result.items()))
|
59 |
+
|
60 |
+
end_time = time.time()
|
61 |
+
time_elapsed = np.round(end_time - start_time, 4)
|
62 |
+
stats = dif._generate_stats(directory_A, directory_B,
|
63 |
+
time.localtime(start_time), time.localtime(end_time), time_elapsed,
|
64 |
+
similarity, total, len(result))
|
65 |
+
|
66 |
+
self.result = result
|
67 |
+
self.lower_quality = lower_quality
|
68 |
+
self.stats = stats
|
69 |
+
|
70 |
+
if len(result) == 1:
|
71 |
+
images = "image"
|
72 |
+
else:
|
73 |
+
images = "images"
|
74 |
+
print("Found", len(result), images, "with one or more duplicate/similar images in", time_elapsed, "seconds.")
|
75 |
+
|
76 |
+
if len(result) != 0:
|
77 |
+
if delete:
|
78 |
+
if not silent_del:
|
79 |
+
usr = input("Are you sure you want to delete all lower resolution duplicate images? \nThis cannot be undone. (y/n)")
|
80 |
+
if str(usr) == "y":
|
81 |
+
dif._delete_imgs(set(lower_quality))
|
82 |
+
else:
|
83 |
+
print("Image deletion canceled.")
|
84 |
+
else:
|
85 |
+
dif._delete_imgs(set(lower_quality))
|
86 |
+
|
87 |
+
# Function that searches one directory for duplicate/similar images
|
88 |
+
def _search_one_dir(directory_A, similarity="normal", px_size=50, sort_output=False, show_output=False, show_progress=False):
|
89 |
+
|
90 |
+
img_matrices_A, filenames_A = dif._create_imgs_matrix(directory_A, px_size)
|
91 |
+
total = len(img_matrices_A)
|
92 |
+
result = {}
|
93 |
+
lower_quality = []
|
94 |
+
|
95 |
+
ref = dif._map_similarity(similarity)
|
96 |
+
|
97 |
+
# find duplicates/similar images within one folder
|
98 |
+
for count_A, imageMatrix_A in enumerate(img_matrices_A):
|
99 |
+
if show_progress:
|
100 |
+
dif._show_progress(count_A, img_matrices_A)
|
101 |
+
for count_B, imageMatrix_B in enumerate(img_matrices_A):
|
102 |
+
if count_B > count_A and count_A != len(img_matrices_A):
|
103 |
+
rotations = 0
|
104 |
+
while rotations <= 3:
|
105 |
+
if rotations != 0:
|
106 |
+
imageMatrix_B = dif._rotate_img(imageMatrix_B)
|
107 |
+
|
108 |
+
err = dif._mse(imageMatrix_A, imageMatrix_B)
|
109 |
+
if err < ref:
|
110 |
+
if show_output:
|
111 |
+
dif._show_img_figs(imageMatrix_A, imageMatrix_B, err)
|
112 |
+
dif._show_file_info(str("..." + directory_A[-35:]) + "/" + filenames_A[count_A],
|
113 |
+
str("..." + directory_A[-35:]) + "/" + filenames_A[count_B])
|
114 |
+
if filenames_A[count_A] in result.keys():
|
115 |
+
result[filenames_A[count_A]]["duplicates"] = result[filenames_A[count_A]]["duplicates"] + [directory_A + "/" + filenames_A[count_B]]
|
116 |
+
else:
|
117 |
+
result[filenames_A[count_A]] = {"location": directory_A + "/" + filenames_A[count_A],
|
118 |
+
"duplicates": [directory_A + "/" + filenames_A[count_B]]}
|
119 |
+
high, low = dif._check_img_quality(directory_A, directory_A, filenames_A[count_A], filenames_A[count_B])
|
120 |
+
lower_quality.append(low)
|
121 |
+
break
|
122 |
+
else:
|
123 |
+
rotations += 1
|
124 |
+
|
125 |
+
if sort_output == True:
|
126 |
+
result = collections.OrderedDict(sorted(result.items()))
|
127 |
+
return result, lower_quality, total
|
128 |
+
|
129 |
+
# Function that searches two directories for duplicate/similar images
|
130 |
+
def _search_two_dirs(directory_A, directory_B=None, similarity="normal", px_size=50, sort_output=False, show_output=False, show_progress=False):
|
131 |
+
|
132 |
+
img_matrices_A, filenames_A = dif._create_imgs_matrix(directory_A, px_size)
|
133 |
+
img_matrices_B, filenames_B = dif._create_imgs_matrix(directory_B, px_size)
|
134 |
+
total = len(img_matrices_A) + len(img_matrices_B)
|
135 |
+
result = {}
|
136 |
+
lower_quality = []
|
137 |
+
|
138 |
+
ref = dif._map_similarity(similarity)
|
139 |
+
|
140 |
+
# find duplicates/similar images between two folders
|
141 |
+
for count_A, imageMatrix_A in enumerate(img_matrices_A):
|
142 |
+
if show_progress:
|
143 |
+
dif._show_progress(count_A, img_matrices_A)
|
144 |
+
for count_B, imageMatrix_B in enumerate(img_matrices_B):
|
145 |
+
rotations = 0
|
146 |
+
while rotations <= 3:
|
147 |
+
if rotations != 0:
|
148 |
+
imageMatrix_B = dif._rotate_img(imageMatrix_B)
|
149 |
+
|
150 |
+
err = dif._mse(imageMatrix_A, imageMatrix_B)
|
151 |
+
if err < ref:
|
152 |
+
if show_output:
|
153 |
+
dif._show_img_figs(imageMatrix_A, imageMatrix_B, err)
|
154 |
+
dif._show_file_info(str("..." + directory_A[-35:]) + "/" + filenames_A[count_A],
|
155 |
+
str("..." + directory_B[-35:]) + "/" + filenames_B[count_B])
|
156 |
+
if filenames_A[count_A] in result.keys():
|
157 |
+
result[filenames_A[count_A]]["duplicates"] = result[filenames_A[count_A]]["duplicates"] + [directory_B + "/" + filenames_B[count_B]]
|
158 |
+
else:
|
159 |
+
result[filenames_A[count_A]] = {"location": directory_A + "/" + filenames_A[count_A],
|
160 |
+
"duplicates": [directory_B + "/" + filenames_B[count_B]]}
|
161 |
+
try:
|
162 |
+
high, low = dif._check_img_quality(directory_A, directory_B, filenames_A[count_A], filenames_B[count_B])
|
163 |
+
lower_quality.append(low)
|
164 |
+
except:
|
165 |
+
pass
|
166 |
+
break
|
167 |
+
else:
|
168 |
+
rotations += 1
|
169 |
+
|
170 |
+
if sort_output == True:
|
171 |
+
result = collections.OrderedDict(sorted(result.items()))
|
172 |
+
|
173 |
+
return result, lower_quality, total
|
174 |
+
|
175 |
+
# Function that processes the directories that were input as parameters
|
176 |
+
def _process_directory(directory):
|
177 |
+
# check if directories are valid
|
178 |
+
directory += os.sep
|
179 |
+
if not os.path.isdir(directory):
|
180 |
+
raise FileNotFoundError(f"Directory: " + directory + " does not exist")
|
181 |
+
return directory
|
182 |
+
|
183 |
+
# Function that validates the input parameters of DifPy
|
184 |
+
def _validate_parameters(sort_output, show_output, show_progress, similarity, px_size, delete, silent_del):
|
185 |
+
# validate the parameters of the function
|
186 |
+
if sort_output != True and sort_output != False:
|
187 |
+
raise ValueError('Invalid value for "sort_output" parameter.')
|
188 |
+
if show_output != True and show_output != False:
|
189 |
+
raise ValueError('Invalid value for "show_output" parameter.')
|
190 |
+
if show_progress != True and show_progress != False:
|
191 |
+
raise ValueError('Invalid value for "show_progress" parameter.')
|
192 |
+
if similarity not in ["low", "normal", "high"]:
|
193 |
+
raise ValueError('Invalid value for "similarity" parameter.')
|
194 |
+
if px_size < 10 or px_size > 5000:
|
195 |
+
raise ValueError('Invalid value for "px_size" parameter.')
|
196 |
+
if delete != True and delete != False:
|
197 |
+
raise ValueError('Invalid value for "delete" parameter.')
|
198 |
+
if silent_del != True and silent_del != False:
|
199 |
+
raise ValueError('Invalid value for "silent_del" parameter.')
|
200 |
+
|
201 |
+
# Function that creates a list of matrices for each image found in the folders
|
202 |
+
def _create_imgs_matrix(directory, px_size):
|
203 |
+
directory = dif._process_directory(directory)
|
204 |
+
img_filenames = []
|
205 |
+
# create list of all files in directory
|
206 |
+
folder_files = [filename for filename in os.listdir(directory)]
|
207 |
+
|
208 |
+
# create images matrix
|
209 |
+
imgs_matrix = []
|
210 |
+
for filename in folder_files:
|
211 |
+
path = os.path.join(directory, filename)
|
212 |
+
# check if the file is not a folder
|
213 |
+
if not os.path.isdir(path):
|
214 |
+
try:
|
215 |
+
img = cv2.imdecode(np.fromfile(
|
216 |
+
path, dtype=np.uint8), cv2.IMREAD_UNCHANGED)
|
217 |
+
if type(img) == np.ndarray:
|
218 |
+
img = img[..., 0:3]
|
219 |
+
img = cv2.resize(img, dsize=(
|
220 |
+
px_size, px_size), interpolation=cv2.INTER_CUBIC)
|
221 |
+
|
222 |
+
if len(img.shape) == 2:
|
223 |
+
img = skimage.color.gray2rgb(img)
|
224 |
+
imgs_matrix.append(img)
|
225 |
+
img_filenames.append(filename)
|
226 |
+
except:
|
227 |
+
pass
|
228 |
+
return imgs_matrix, img_filenames
|
229 |
+
|
230 |
+
# Function that maps the similarity grade to the respective MSE value
|
231 |
+
def _map_similarity(similarity):
|
232 |
+
if similarity == "low":
|
233 |
+
ref = 1000
|
234 |
+
# search for exact duplicate images, extremly sensitive, MSE < 0.1
|
235 |
+
elif similarity == "high":
|
236 |
+
ref = 0.1
|
237 |
+
# normal, search for duplicates, recommended, MSE < 200
|
238 |
+
else:
|
239 |
+
ref = 200
|
240 |
+
return ref
|
241 |
+
|
242 |
+
# Function that calulates the mean squared error (mse) between two image matrices
|
243 |
+
def _mse(imageA, imageB):
|
244 |
+
err = np.sum((imageA.astype("float") - imageB.astype("float")) ** 2)
|
245 |
+
err /= float(imageA.shape[0] * imageA.shape[1])
|
246 |
+
return err
|
247 |
+
|
248 |
+
# Function that plots two compared image files and their mse
|
249 |
+
def _show_img_figs(imageA, imageB, err):
|
250 |
+
fig = plt.figure()
|
251 |
+
plt.suptitle("MSE: %.2f" % (err))
|
252 |
+
# plot first image
|
253 |
+
ax = fig.add_subplot(1, 2, 1)
|
254 |
+
plt.imshow(imageA, cmap=plt.cm.gray)
|
255 |
+
plt.axis("off")
|
256 |
+
# plot second image
|
257 |
+
ax = fig.add_subplot(1, 2, 2)
|
258 |
+
plt.imshow(imageB, cmap=plt.cm.gray)
|
259 |
+
plt.axis("off")
|
260 |
+
# show the images
|
261 |
+
plt.show()
|
262 |
+
|
263 |
+
# Function for printing filename info of plotted image files
|
264 |
+
def _show_file_info(imageA, imageB):
|
265 |
+
print("""Duplicate files:\n{} and \n{}""".format(imageA, imageB))
|
266 |
+
|
267 |
+
# Function that displays a progress bar during the search
|
268 |
+
def _show_progress(count, img_matrix):
|
269 |
+
if count+1 == len(img_matrix):
|
270 |
+
print("DifPy processing images: [{}/{}] [{:.0%}]".format(count, len(img_matrix), count/len(img_matrix)), end="\r")
|
271 |
+
print("DifPy processing images: [{}/{}] [{:.0%}]".format(count+1, len(img_matrix), (count+1)/len(img_matrix)))
|
272 |
+
else:
|
273 |
+
print("DifPy processing images: [{}/{}] [{:.0%}]".format(count, len(img_matrix), count/len(img_matrix)), end="\r")
|
274 |
+
|
275 |
+
# Function for rotating an image matrix by a 90 degree angle
|
276 |
+
def _rotate_img(image):
|
277 |
+
image = np.rot90(image, k=1, axes=(0, 1))
|
278 |
+
return image
|
279 |
+
|
280 |
+
# Function for checking the quality of compared images, appends the lower quality image to the list
|
281 |
+
def _check_img_quality(directoryA, directoryB, imageA, imageB):
|
282 |
+
dirA = dif._process_directory(directoryA)
|
283 |
+
dirB = dif._process_directory(directoryB)
|
284 |
+
size_imgA = os.stat(os.path.join(dirA, imageA)).st_size
|
285 |
+
size_imgB = os.stat(os.path.join(dirB, imageB)).st_size
|
286 |
+
if size_imgA >= size_imgB:
|
287 |
+
return directoryA + "/" + imageA, directoryB + "/" + imageB
|
288 |
+
else:
|
289 |
+
return directoryB + "/" + imageB, directoryA + "/" + imageA
|
290 |
+
|
291 |
+
# Function that generates a dictionary for statistics around the completed DifPy process
|
292 |
+
def _generate_stats(directoryA, directoryB, start_time, end_time, time_elapsed, similarity, total_searched, total_found):
|
293 |
+
stats = {}
|
294 |
+
stats["directory_1"] = directoryA
|
295 |
+
if directoryB != None:
|
296 |
+
stats["directory_2"] = directoryB
|
297 |
+
stats["duration"] = {"start_date": time.strftime("%Y-%m-%d", start_time),
|
298 |
+
"start_time": time.strftime("%H:%M:%S", start_time),
|
299 |
+
"end_date": time.strftime("%Y-%m-%d", end_time),
|
300 |
+
"end_time": time.strftime("%H:%M:%S", end_time),
|
301 |
+
"seconds_elapsed": time_elapsed}
|
302 |
+
stats["similarity_grade"] = similarity
|
303 |
+
stats["similarity_mse"] = dif._map_similarity(similarity)
|
304 |
+
stats["total_images_searched"] = total_searched
|
305 |
+
stats["total_images_found"] = total_found
|
306 |
+
return stats
|
307 |
+
|
308 |
+
# Function for deleting the lower quality images that were found after the search
|
309 |
+
def _delete_imgs(lower_quality_set):
|
310 |
+
deleted = 0
|
311 |
+
for file in lower_quality_set:
|
312 |
+
print("\nDeletion in progress...", end="\r")
|
313 |
+
try:
|
314 |
+
os.remove(file)
|
315 |
+
print("Deleted file:", file, end="\r")
|
316 |
+
deleted += 1
|
317 |
+
except:
|
318 |
+
print("Could not delete file:", file, end="\r")
|
319 |
+
print("\n***\nDeleted", deleted, "images.")
|