|
import os |
|
import einops |
|
import torch |
|
import numpy as np |
|
|
|
import ldm_patched.modules.model_management |
|
import ldm_patched.modules.model_detection |
|
import ldm_patched.modules.model_patcher |
|
import ldm_patched.modules.utils |
|
import ldm_patched.modules.controlnet |
|
import modules.sample_hijack |
|
import ldm_patched.modules.samplers |
|
import ldm_patched.modules.latent_formats |
|
|
|
from ldm_patched.modules.sd import load_checkpoint_guess_config |
|
from ldm_patched.contrib.external import VAEDecode, EmptyLatentImage, VAEEncode, VAEEncodeTiled, VAEDecodeTiled, \ |
|
ControlNetApplyAdvanced |
|
from ldm_patched.contrib.external_freelunch import FreeU_V2 |
|
from ldm_patched.modules.sample import prepare_mask |
|
from modules.lora import match_lora |
|
from modules.util import get_file_from_folder_list |
|
from ldm_patched.modules.lora import model_lora_keys_unet, model_lora_keys_clip |
|
from modules.config import path_embeddings |
|
from ldm_patched.contrib.external_model_advanced import ModelSamplingDiscrete |
|
|
|
|
|
opEmptyLatentImage = EmptyLatentImage() |
|
opVAEDecode = VAEDecode() |
|
opVAEEncode = VAEEncode() |
|
opVAEDecodeTiled = VAEDecodeTiled() |
|
opVAEEncodeTiled = VAEEncodeTiled() |
|
opControlNetApplyAdvanced = ControlNetApplyAdvanced() |
|
opFreeU = FreeU_V2() |
|
opModelSamplingDiscrete = ModelSamplingDiscrete() |
|
|
|
|
|
class StableDiffusionModel: |
|
def __init__(self, unet=None, vae=None, clip=None, clip_vision=None, filename=None): |
|
self.unet = unet |
|
self.vae = vae |
|
self.clip = clip |
|
self.clip_vision = clip_vision |
|
self.filename = filename |
|
self.unet_with_lora = unet |
|
self.clip_with_lora = clip |
|
self.visited_loras = '' |
|
|
|
self.lora_key_map_unet = {} |
|
self.lora_key_map_clip = {} |
|
|
|
if self.unet is not None: |
|
self.lora_key_map_unet = model_lora_keys_unet(self.unet.model, self.lora_key_map_unet) |
|
self.lora_key_map_unet.update({x: x for x in self.unet.model.state_dict().keys()}) |
|
|
|
if self.clip is not None: |
|
self.lora_key_map_clip = model_lora_keys_clip(self.clip.cond_stage_model, self.lora_key_map_clip) |
|
self.lora_key_map_clip.update({x: x for x in self.clip.cond_stage_model.state_dict().keys()}) |
|
|
|
@torch.no_grad() |
|
@torch.inference_mode() |
|
def refresh_loras(self, loras): |
|
assert isinstance(loras, list) |
|
|
|
if self.visited_loras == str(loras): |
|
return |
|
|
|
self.visited_loras = str(loras) |
|
|
|
if self.unet is None: |
|
return |
|
|
|
print(f'Request to load LoRAs {str(loras)} for model [{self.filename}].') |
|
|
|
loras_to_load = [] |
|
|
|
for name, weight in loras: |
|
if name == 'None': |
|
continue |
|
|
|
if os.path.exists(name): |
|
lora_filename = name |
|
else: |
|
lora_filename = get_file_from_folder_list(name, modules.config.paths_loras) |
|
|
|
if not os.path.exists(lora_filename): |
|
print(f'Lora file not found: {lora_filename}') |
|
continue |
|
|
|
loras_to_load.append((lora_filename, weight)) |
|
|
|
self.unet_with_lora = self.unet.clone() if self.unet is not None else None |
|
self.clip_with_lora = self.clip.clone() if self.clip is not None else None |
|
|
|
for lora_filename, weight in loras_to_load: |
|
lora_unmatch = ldm_patched.modules.utils.load_torch_file(lora_filename, safe_load=False) |
|
lora_unet, lora_unmatch = match_lora(lora_unmatch, self.lora_key_map_unet) |
|
lora_clip, lora_unmatch = match_lora(lora_unmatch, self.lora_key_map_clip) |
|
|
|
if len(lora_unmatch) > 12: |
|
|
|
continue |
|
|
|
if len(lora_unmatch) > 0: |
|
print(f'Loaded LoRA [{lora_filename}] for model [{self.filename}] ' |
|
f'with unmatched keys {list(lora_unmatch.keys())}') |
|
|
|
if self.unet_with_lora is not None and len(lora_unet) > 0: |
|
loaded_keys = self.unet_with_lora.add_patches(lora_unet, weight) |
|
print(f'Loaded LoRA [{lora_filename}] for UNet [{self.filename}] ' |
|
f'with {len(loaded_keys)} keys at weight {weight}.') |
|
for item in lora_unet: |
|
if item not in loaded_keys: |
|
print("UNet LoRA key skipped: ", item) |
|
|
|
if self.clip_with_lora is not None and len(lora_clip) > 0: |
|
loaded_keys = self.clip_with_lora.add_patches(lora_clip, weight) |
|
print(f'Loaded LoRA [{lora_filename}] for CLIP [{self.filename}] ' |
|
f'with {len(loaded_keys)} keys at weight {weight}.') |
|
for item in lora_clip: |
|
if item not in loaded_keys: |
|
print("CLIP LoRA key skipped: ", item) |
|
|
|
|
|
@torch.no_grad() |
|
@torch.inference_mode() |
|
def apply_freeu(model, b1, b2, s1, s2): |
|
return opFreeU.patch(model=model, b1=b1, b2=b2, s1=s1, s2=s2)[0] |
|
|
|
|
|
@torch.no_grad() |
|
@torch.inference_mode() |
|
def load_controlnet(ckpt_filename): |
|
return ldm_patched.modules.controlnet.load_controlnet(ckpt_filename) |
|
|
|
|
|
@torch.no_grad() |
|
@torch.inference_mode() |
|
def apply_controlnet(positive, negative, control_net, image, strength, start_percent, end_percent): |
|
return opControlNetApplyAdvanced.apply_controlnet(positive=positive, negative=negative, control_net=control_net, |
|
image=image, strength=strength, start_percent=start_percent, end_percent=end_percent) |
|
|
|
|
|
@torch.no_grad() |
|
@torch.inference_mode() |
|
def load_model(ckpt_filename): |
|
unet, clip, vae, clip_vision = load_checkpoint_guess_config(ckpt_filename, embedding_directory=path_embeddings) |
|
return StableDiffusionModel(unet=unet, clip=clip, vae=vae, clip_vision=clip_vision, filename=ckpt_filename) |
|
|
|
|
|
@torch.no_grad() |
|
@torch.inference_mode() |
|
def generate_empty_latent(width=1024, height=1024, batch_size=1): |
|
return opEmptyLatentImage.generate(width=width, height=height, batch_size=batch_size)[0] |
|
|
|
|
|
@torch.no_grad() |
|
@torch.inference_mode() |
|
def decode_vae(vae, latent_image, tiled=False): |
|
if tiled: |
|
return opVAEDecodeTiled.decode(samples=latent_image, vae=vae, tile_size=512)[0] |
|
else: |
|
return opVAEDecode.decode(samples=latent_image, vae=vae)[0] |
|
|
|
|
|
@torch.no_grad() |
|
@torch.inference_mode() |
|
def encode_vae(vae, pixels, tiled=False): |
|
if tiled: |
|
return opVAEEncodeTiled.encode(pixels=pixels, vae=vae, tile_size=512)[0] |
|
else: |
|
return opVAEEncode.encode(pixels=pixels, vae=vae)[0] |
|
|
|
|
|
@torch.no_grad() |
|
@torch.inference_mode() |
|
def encode_vae_inpaint(vae, pixels, mask): |
|
assert mask.ndim == 3 and pixels.ndim == 4 |
|
assert mask.shape[-1] == pixels.shape[-2] |
|
assert mask.shape[-2] == pixels.shape[-3] |
|
|
|
w = mask.round()[..., None] |
|
pixels = pixels * (1 - w) + 0.5 * w |
|
|
|
latent = vae.encode(pixels) |
|
B, C, H, W = latent.shape |
|
|
|
latent_mask = mask[:, None, :, :] |
|
latent_mask = torch.nn.functional.interpolate(latent_mask, size=(H * 8, W * 8), mode="bilinear").round() |
|
latent_mask = torch.nn.functional.max_pool2d(latent_mask, (8, 8)).round().to(latent) |
|
|
|
return latent, latent_mask |
|
|
|
|
|
class VAEApprox(torch.nn.Module): |
|
def __init__(self): |
|
super(VAEApprox, self).__init__() |
|
self.conv1 = torch.nn.Conv2d(4, 8, (7, 7)) |
|
self.conv2 = torch.nn.Conv2d(8, 16, (5, 5)) |
|
self.conv3 = torch.nn.Conv2d(16, 32, (3, 3)) |
|
self.conv4 = torch.nn.Conv2d(32, 64, (3, 3)) |
|
self.conv5 = torch.nn.Conv2d(64, 32, (3, 3)) |
|
self.conv6 = torch.nn.Conv2d(32, 16, (3, 3)) |
|
self.conv7 = torch.nn.Conv2d(16, 8, (3, 3)) |
|
self.conv8 = torch.nn.Conv2d(8, 3, (3, 3)) |
|
self.current_type = None |
|
|
|
def forward(self, x): |
|
extra = 11 |
|
x = torch.nn.functional.interpolate(x, (x.shape[2] * 2, x.shape[3] * 2)) |
|
x = torch.nn.functional.pad(x, (extra, extra, extra, extra)) |
|
for layer in [self.conv1, self.conv2, self.conv3, self.conv4, self.conv5, self.conv6, self.conv7, self.conv8]: |
|
x = layer(x) |
|
x = torch.nn.functional.leaky_relu(x, 0.1) |
|
return x |
|
|
|
|
|
VAE_approx_models = {} |
|
|
|
|
|
@torch.no_grad() |
|
@torch.inference_mode() |
|
def get_previewer(model): |
|
global VAE_approx_models |
|
|
|
from modules.config import path_vae_approx |
|
is_sdxl = isinstance(model.model.latent_format, ldm_patched.modules.latent_formats.SDXL) |
|
vae_approx_filename = os.path.join(path_vae_approx, 'xlvaeapp.pth' if is_sdxl else 'vaeapp_sd15.pth') |
|
|
|
if vae_approx_filename in VAE_approx_models: |
|
VAE_approx_model = VAE_approx_models[vae_approx_filename] |
|
else: |
|
sd = torch.load(vae_approx_filename, map_location='cpu') |
|
VAE_approx_model = VAEApprox() |
|
VAE_approx_model.load_state_dict(sd) |
|
del sd |
|
VAE_approx_model.eval() |
|
|
|
if ldm_patched.modules.model_management.should_use_fp16(): |
|
VAE_approx_model.half() |
|
VAE_approx_model.current_type = torch.float16 |
|
else: |
|
VAE_approx_model.float() |
|
VAE_approx_model.current_type = torch.float32 |
|
|
|
VAE_approx_model.to(ldm_patched.modules.model_management.get_torch_device()) |
|
VAE_approx_models[vae_approx_filename] = VAE_approx_model |
|
|
|
@torch.no_grad() |
|
@torch.inference_mode() |
|
def preview_function(x0, step, total_steps): |
|
with torch.no_grad(): |
|
x_sample = x0.to(VAE_approx_model.current_type) |
|
x_sample = VAE_approx_model(x_sample) * 127.5 + 127.5 |
|
x_sample = einops.rearrange(x_sample, 'b c h w -> b h w c')[0] |
|
x_sample = x_sample.cpu().numpy().clip(0, 255).astype(np.uint8) |
|
return x_sample |
|
|
|
return preview_function |
|
|
|
|
|
@torch.no_grad() |
|
@torch.inference_mode() |
|
def ksampler(model, positive, negative, latent, seed=None, steps=30, cfg=7.0, sampler_name='dpmpp_2m_sde_gpu', |
|
scheduler='karras', denoise=1.0, disable_noise=False, start_step=None, last_step=None, |
|
force_full_denoise=False, callback_function=None, refiner=None, refiner_switch=-1, |
|
previewer_start=None, previewer_end=None, sigmas=None, noise_mean=None, disable_preview=False): |
|
|
|
if sigmas is not None: |
|
sigmas = sigmas.clone().to(ldm_patched.modules.model_management.get_torch_device()) |
|
|
|
latent_image = latent["samples"] |
|
|
|
if disable_noise: |
|
noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu") |
|
else: |
|
batch_inds = latent["batch_index"] if "batch_index" in latent else None |
|
noise = ldm_patched.modules.sample.prepare_noise(latent_image, seed, batch_inds) |
|
|
|
if isinstance(noise_mean, torch.Tensor): |
|
noise = noise + noise_mean - torch.mean(noise, dim=1, keepdim=True) |
|
|
|
noise_mask = None |
|
if "noise_mask" in latent: |
|
noise_mask = latent["noise_mask"] |
|
|
|
previewer = get_previewer(model) |
|
|
|
if previewer_start is None: |
|
previewer_start = 0 |
|
|
|
if previewer_end is None: |
|
previewer_end = steps |
|
|
|
def callback(step, x0, x, total_steps): |
|
ldm_patched.modules.model_management.throw_exception_if_processing_interrupted() |
|
y = None |
|
if previewer is not None and not disable_preview: |
|
y = previewer(x0, previewer_start + step, previewer_end) |
|
if callback_function is not None: |
|
callback_function(previewer_start + step, x0, x, previewer_end, y) |
|
|
|
disable_pbar = False |
|
modules.sample_hijack.current_refiner = refiner |
|
modules.sample_hijack.refiner_switch_step = refiner_switch |
|
ldm_patched.modules.samplers.sample = modules.sample_hijack.sample_hacked |
|
|
|
try: |
|
samples = ldm_patched.modules.sample.sample(model, |
|
noise, steps, cfg, sampler_name, scheduler, |
|
positive, negative, latent_image, |
|
denoise=denoise, disable_noise=disable_noise, |
|
start_step=start_step, |
|
last_step=last_step, |
|
force_full_denoise=force_full_denoise, noise_mask=noise_mask, |
|
callback=callback, |
|
disable_pbar=disable_pbar, seed=seed, sigmas=sigmas) |
|
|
|
out = latent.copy() |
|
out["samples"] = samples |
|
finally: |
|
modules.sample_hijack.current_refiner = None |
|
|
|
return out |
|
|
|
|
|
@torch.no_grad() |
|
@torch.inference_mode() |
|
def pytorch_to_numpy(x): |
|
return [np.clip(255. * y.cpu().numpy(), 0, 255).astype(np.uint8) for y in x] |
|
|
|
|
|
@torch.no_grad() |
|
@torch.inference_mode() |
|
def numpy_to_pytorch(x): |
|
y = x.astype(np.float32) / 255.0 |
|
y = y[None] |
|
y = np.ascontiguousarray(y.copy()) |
|
y = torch.from_numpy(y).float() |
|
return y |
|
|