AIImages / extras /facexlib /utils /face_restoration_helper.py
Adityadn's picture
Upload 524 files
617d388 verified
raw
history blame
No virus
17.3 kB
import cv2
import numpy as np
import os
import torch
from torchvision.transforms.functional import normalize
from extras.facexlib.detection import init_detection_model
from extras.facexlib.parsing import init_parsing_model
from extras.facexlib.utils.misc import img2tensor, imwrite
def get_largest_face(det_faces, h, w):
def get_location(val, length):
if val < 0:
return 0
elif val > length:
return length
else:
return val
face_areas = []
for det_face in det_faces:
left = get_location(det_face[0], w)
right = get_location(det_face[2], w)
top = get_location(det_face[1], h)
bottom = get_location(det_face[3], h)
face_area = (right - left) * (bottom - top)
face_areas.append(face_area)
largest_idx = face_areas.index(max(face_areas))
return det_faces[largest_idx], largest_idx
def get_center_face(det_faces, h=0, w=0, center=None):
if center is not None:
center = np.array(center)
else:
center = np.array([w / 2, h / 2])
center_dist = []
for det_face in det_faces:
face_center = np.array([(det_face[0] + det_face[2]) / 2, (det_face[1] + det_face[3]) / 2])
dist = np.linalg.norm(face_center - center)
center_dist.append(dist)
center_idx = center_dist.index(min(center_dist))
return det_faces[center_idx], center_idx
class FaceRestoreHelper(object):
"""Helper for the face restoration pipeline (base class)."""
def __init__(self,
upscale_factor,
face_size=512,
crop_ratio=(1, 1),
det_model='retinaface_resnet50',
save_ext='png',
template_3points=False,
pad_blur=False,
use_parse=False,
device=None,
model_rootpath=None):
self.template_3points = template_3points # improve robustness
self.upscale_factor = upscale_factor
# the cropped face ratio based on the square face
self.crop_ratio = crop_ratio # (h, w)
assert (self.crop_ratio[0] >= 1 and self.crop_ratio[1] >= 1), 'crop ration only supports >=1'
self.face_size = (int(face_size * self.crop_ratio[1]), int(face_size * self.crop_ratio[0]))
if self.template_3points:
self.face_template = np.array([[192, 240], [319, 240], [257, 371]])
else:
# standard 5 landmarks for FFHQ faces with 512 x 512
self.face_template = np.array([[192.98138, 239.94708], [318.90277, 240.1936], [256.63416, 314.01935],
[201.26117, 371.41043], [313.08905, 371.15118]])
self.face_template = self.face_template * (face_size / 512.0)
if self.crop_ratio[0] > 1:
self.face_template[:, 1] += face_size * (self.crop_ratio[0] - 1) / 2
if self.crop_ratio[1] > 1:
self.face_template[:, 0] += face_size * (self.crop_ratio[1] - 1) / 2
self.save_ext = save_ext
self.pad_blur = pad_blur
if self.pad_blur is True:
self.template_3points = False
self.all_landmarks_5 = []
self.det_faces = []
self.affine_matrices = []
self.inverse_affine_matrices = []
self.cropped_faces = []
self.restored_faces = []
self.pad_input_imgs = []
if device is None:
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
else:
self.device = device
# init face detection model
self.face_det = init_detection_model(det_model, half=False, device=self.device, model_rootpath=model_rootpath)
# init face parsing model
self.use_parse = use_parse
self.face_parse = init_parsing_model(model_name='parsenet', device=self.device, model_rootpath=model_rootpath)
def set_upscale_factor(self, upscale_factor):
self.upscale_factor = upscale_factor
def read_image(self, img):
"""img can be image path or cv2 loaded image."""
# self.input_img is Numpy array, (h, w, c), BGR, uint8, [0, 255]
if isinstance(img, str):
img = cv2.imread(img)
if np.max(img) > 256: # 16-bit image
img = img / 65535 * 255
if len(img.shape) == 2: # gray image
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
elif img.shape[2] == 4: # RGBA image with alpha channel
img = img[:, :, 0:3]
self.input_img = img
def get_face_landmarks_5(self,
only_keep_largest=False,
only_center_face=False,
resize=None,
blur_ratio=0.01,
eye_dist_threshold=None):
if resize is None:
scale = 1
input_img = self.input_img
else:
h, w = self.input_img.shape[0:2]
scale = min(h, w) / resize
h, w = int(h / scale), int(w / scale)
input_img = cv2.resize(self.input_img, (w, h), interpolation=cv2.INTER_LANCZOS4)
with torch.no_grad():
bboxes = self.face_det.detect_faces(input_img, 0.97) * scale
for bbox in bboxes:
# remove faces with too small eye distance: side faces or too small faces
eye_dist = np.linalg.norm([bbox[5] - bbox[7], bbox[6] - bbox[8]])
if eye_dist_threshold is not None and (eye_dist < eye_dist_threshold):
continue
if self.template_3points:
landmark = np.array([[bbox[i], bbox[i + 1]] for i in range(5, 11, 2)])
else:
landmark = np.array([[bbox[i], bbox[i + 1]] for i in range(5, 15, 2)])
self.all_landmarks_5.append(landmark)
self.det_faces.append(bbox[0:5])
if len(self.det_faces) == 0:
return 0
if only_keep_largest:
h, w, _ = self.input_img.shape
self.det_faces, largest_idx = get_largest_face(self.det_faces, h, w)
self.all_landmarks_5 = [self.all_landmarks_5[largest_idx]]
elif only_center_face:
h, w, _ = self.input_img.shape
self.det_faces, center_idx = get_center_face(self.det_faces, h, w)
self.all_landmarks_5 = [self.all_landmarks_5[center_idx]]
# pad blurry images
if self.pad_blur:
self.pad_input_imgs = []
for landmarks in self.all_landmarks_5:
# get landmarks
eye_left = landmarks[0, :]
eye_right = landmarks[1, :]
eye_avg = (eye_left + eye_right) * 0.5
mouth_avg = (landmarks[3, :] + landmarks[4, :]) * 0.5
eye_to_eye = eye_right - eye_left
eye_to_mouth = mouth_avg - eye_avg
# Get the oriented crop rectangle
# x: half width of the oriented crop rectangle
x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1]
# - np.flipud(eye_to_mouth) * [-1, 1]: rotate 90 clockwise
# norm with the hypotenuse: get the direction
x /= np.hypot(*x) # get the hypotenuse of a right triangle
rect_scale = 1.5
x *= max(np.hypot(*eye_to_eye) * 2.0 * rect_scale, np.hypot(*eye_to_mouth) * 1.8 * rect_scale)
# y: half height of the oriented crop rectangle
y = np.flipud(x) * [-1, 1]
# c: center
c = eye_avg + eye_to_mouth * 0.1
# quad: (left_top, left_bottom, right_bottom, right_top)
quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y])
# qsize: side length of the square
qsize = np.hypot(*x) * 2
border = max(int(np.rint(qsize * 0.1)), 3)
# get pad
# pad: (width_left, height_top, width_right, height_bottom)
pad = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))),
int(np.ceil(max(quad[:, 1]))))
pad = [
max(-pad[0] + border, 1),
max(-pad[1] + border, 1),
max(pad[2] - self.input_img.shape[0] + border, 1),
max(pad[3] - self.input_img.shape[1] + border, 1)
]
if max(pad) > 1:
# pad image
pad_img = np.pad(self.input_img, ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect')
# modify landmark coords
landmarks[:, 0] += pad[0]
landmarks[:, 1] += pad[1]
# blur pad images
h, w, _ = pad_img.shape
y, x, _ = np.ogrid[:h, :w, :1]
mask = np.maximum(1.0 - np.minimum(np.float32(x) / pad[0],
np.float32(w - 1 - x) / pad[2]),
1.0 - np.minimum(np.float32(y) / pad[1],
np.float32(h - 1 - y) / pad[3]))
blur = int(qsize * blur_ratio)
if blur % 2 == 0:
blur += 1
blur_img = cv2.boxFilter(pad_img, 0, ksize=(blur, blur))
# blur_img = cv2.GaussianBlur(pad_img, (blur, blur), 0)
pad_img = pad_img.astype('float32')
pad_img += (blur_img - pad_img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0)
pad_img += (np.median(pad_img, axis=(0, 1)) - pad_img) * np.clip(mask, 0.0, 1.0)
pad_img = np.clip(pad_img, 0, 255) # float32, [0, 255]
self.pad_input_imgs.append(pad_img)
else:
self.pad_input_imgs.append(np.copy(self.input_img))
return len(self.all_landmarks_5)
def align_warp_face(self, save_cropped_path=None, border_mode='constant'):
"""Align and warp faces with face template.
"""
if self.pad_blur:
assert len(self.pad_input_imgs) == len(
self.all_landmarks_5), f'Mismatched samples: {len(self.pad_input_imgs)} and {len(self.all_landmarks_5)}'
for idx, landmark in enumerate(self.all_landmarks_5):
# use 5 landmarks to get affine matrix
# use cv2.LMEDS method for the equivalence to skimage transform
# ref: https://blog.csdn.net/yichxi/article/details/115827338
affine_matrix = cv2.estimateAffinePartial2D(landmark, self.face_template, method=cv2.LMEDS)[0]
self.affine_matrices.append(affine_matrix)
# warp and crop faces
if border_mode == 'constant':
border_mode = cv2.BORDER_CONSTANT
elif border_mode == 'reflect101':
border_mode = cv2.BORDER_REFLECT101
elif border_mode == 'reflect':
border_mode = cv2.BORDER_REFLECT
if self.pad_blur:
input_img = self.pad_input_imgs[idx]
else:
input_img = self.input_img
cropped_face = cv2.warpAffine(
input_img, affine_matrix, self.face_size, borderMode=border_mode, borderValue=(135, 133, 132)) # gray
self.cropped_faces.append(cropped_face)
# save the cropped face
if save_cropped_path is not None:
path = os.path.splitext(save_cropped_path)[0]
save_path = f'{path}_{idx:02d}.{self.save_ext}'
imwrite(cropped_face, save_path)
def get_inverse_affine(self, save_inverse_affine_path=None):
"""Get inverse affine matrix."""
for idx, affine_matrix in enumerate(self.affine_matrices):
inverse_affine = cv2.invertAffineTransform(affine_matrix)
inverse_affine *= self.upscale_factor
self.inverse_affine_matrices.append(inverse_affine)
# save inverse affine matrices
if save_inverse_affine_path is not None:
path, _ = os.path.splitext(save_inverse_affine_path)
save_path = f'{path}_{idx:02d}.pth'
torch.save(inverse_affine, save_path)
def add_restored_face(self, face):
self.restored_faces.append(face)
def paste_faces_to_input_image(self, save_path=None, upsample_img=None):
h, w, _ = self.input_img.shape
h_up, w_up = int(h * self.upscale_factor), int(w * self.upscale_factor)
if upsample_img is None:
# simply resize the background
upsample_img = cv2.resize(self.input_img, (w_up, h_up), interpolation=cv2.INTER_LANCZOS4)
else:
upsample_img = cv2.resize(upsample_img, (w_up, h_up), interpolation=cv2.INTER_LANCZOS4)
assert len(self.restored_faces) == len(
self.inverse_affine_matrices), ('length of restored_faces and affine_matrices are different.')
for restored_face, inverse_affine in zip(self.restored_faces, self.inverse_affine_matrices):
# Add an offset to inverse affine matrix, for more precise back alignment
if self.upscale_factor > 1:
extra_offset = 0.5 * self.upscale_factor
else:
extra_offset = 0
inverse_affine[:, 2] += extra_offset
inv_restored = cv2.warpAffine(restored_face, inverse_affine, (w_up, h_up))
if self.use_parse:
# inference
face_input = cv2.resize(restored_face, (512, 512), interpolation=cv2.INTER_LINEAR)
face_input = img2tensor(face_input.astype('float32') / 255., bgr2rgb=True, float32=True)
normalize(face_input, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True)
face_input = torch.unsqueeze(face_input, 0).to(self.device)
with torch.no_grad():
out = self.face_parse(face_input)[0]
out = out.argmax(dim=1).squeeze().cpu().numpy()
mask = np.zeros(out.shape)
MASK_COLORMAP = [0, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 0, 255, 0, 0, 0]
for idx, color in enumerate(MASK_COLORMAP):
mask[out == idx] = color
# blur the mask
mask = cv2.GaussianBlur(mask, (101, 101), 11)
mask = cv2.GaussianBlur(mask, (101, 101), 11)
# remove the black borders
thres = 10
mask[:thres, :] = 0
mask[-thres:, :] = 0
mask[:, :thres] = 0
mask[:, -thres:] = 0
mask = mask / 255.
mask = cv2.resize(mask, restored_face.shape[:2])
mask = cv2.warpAffine(mask, inverse_affine, (w_up, h_up), flags=3)
inv_soft_mask = mask[:, :, None]
pasted_face = inv_restored
else: # use square parse maps
mask = np.ones(self.face_size, dtype=np.float32)
inv_mask = cv2.warpAffine(mask, inverse_affine, (w_up, h_up))
# remove the black borders
inv_mask_erosion = cv2.erode(
inv_mask, np.ones((int(2 * self.upscale_factor), int(2 * self.upscale_factor)), np.uint8))
pasted_face = inv_mask_erosion[:, :, None] * inv_restored
total_face_area = np.sum(inv_mask_erosion) # // 3
# compute the fusion edge based on the area of face
w_edge = int(total_face_area**0.5) // 20
erosion_radius = w_edge * 2
inv_mask_center = cv2.erode(inv_mask_erosion, np.ones((erosion_radius, erosion_radius), np.uint8))
blur_size = w_edge * 2
inv_soft_mask = cv2.GaussianBlur(inv_mask_center, (blur_size + 1, blur_size + 1), 0)
if len(upsample_img.shape) == 2: # upsample_img is gray image
upsample_img = upsample_img[:, :, None]
inv_soft_mask = inv_soft_mask[:, :, None]
if len(upsample_img.shape) == 3 and upsample_img.shape[2] == 4: # alpha channel
alpha = upsample_img[:, :, 3:]
upsample_img = inv_soft_mask * pasted_face + (1 - inv_soft_mask) * upsample_img[:, :, 0:3]
upsample_img = np.concatenate((upsample_img, alpha), axis=2)
else:
upsample_img = inv_soft_mask * pasted_face + (1 - inv_soft_mask) * upsample_img
if np.max(upsample_img) > 256: # 16-bit image
upsample_img = upsample_img.astype(np.uint16)
else:
upsample_img = upsample_img.astype(np.uint8)
if save_path is not None:
path = os.path.splitext(save_path)[0]
save_path = f'{path}.{self.save_ext}'
imwrite(upsample_img, save_path)
return upsample_img
def clean_all(self):
self.all_landmarks_5 = []
self.restored_faces = []
self.affine_matrices = []
self.cropped_faces = []
self.inverse_affine_matrices = []
self.det_faces = []
self.pad_input_imgs = []