|
|
|
|
|
import torch |
|
import torch.nn.functional as F |
|
import math |
|
|
|
from tqdm.auto import trange, tqdm |
|
|
|
|
|
class NoiseScheduleVP: |
|
def __init__( |
|
self, |
|
schedule='discrete', |
|
betas=None, |
|
alphas_cumprod=None, |
|
continuous_beta_0=0.1, |
|
continuous_beta_1=20., |
|
): |
|
"""Create a wrapper class for the forward SDE (VP type). |
|
|
|
*** |
|
Update: We support discrete-time diffusion models by implementing a picewise linear interpolation for log_alpha_t. |
|
We recommend to use schedule='discrete' for the discrete-time diffusion models, especially for high-resolution images. |
|
*** |
|
|
|
The forward SDE ensures that the condition distribution q_{t|0}(x_t | x_0) = N ( alpha_t * x_0, sigma_t^2 * I ). |
|
We further define lambda_t = log(alpha_t) - log(sigma_t), which is the half-logSNR (described in the DPM-Solver paper). |
|
Therefore, we implement the functions for computing alpha_t, sigma_t and lambda_t. For t in [0, T], we have: |
|
|
|
log_alpha_t = self.marginal_log_mean_coeff(t) |
|
sigma_t = self.marginal_std(t) |
|
lambda_t = self.marginal_lambda(t) |
|
|
|
Moreover, as lambda(t) is an invertible function, we also support its inverse function: |
|
|
|
t = self.inverse_lambda(lambda_t) |
|
|
|
=============================================================== |
|
|
|
We support both discrete-time DPMs (trained on n = 0, 1, ..., N-1) and continuous-time DPMs (trained on t in [t_0, T]). |
|
|
|
1. For discrete-time DPMs: |
|
|
|
For discrete-time DPMs trained on n = 0, 1, ..., N-1, we convert the discrete steps to continuous time steps by: |
|
t_i = (i + 1) / N |
|
e.g. for N = 1000, we have t_0 = 1e-3 and T = t_{N-1} = 1. |
|
We solve the corresponding diffusion ODE from time T = 1 to time t_0 = 1e-3. |
|
|
|
Args: |
|
betas: A `torch.Tensor`. The beta array for the discrete-time DPM. (See the original DDPM paper for details) |
|
alphas_cumprod: A `torch.Tensor`. The cumprod alphas for the discrete-time DPM. (See the original DDPM paper for details) |
|
|
|
Note that we always have alphas_cumprod = cumprod(betas). Therefore, we only need to set one of `betas` and `alphas_cumprod`. |
|
|
|
**Important**: Please pay special attention for the args for `alphas_cumprod`: |
|
The `alphas_cumprod` is the \hat{alpha_n} arrays in the notations of DDPM. Specifically, DDPMs assume that |
|
q_{t_n | 0}(x_{t_n} | x_0) = N ( \sqrt{\hat{alpha_n}} * x_0, (1 - \hat{alpha_n}) * I ). |
|
Therefore, the notation \hat{alpha_n} is different from the notation alpha_t in DPM-Solver. In fact, we have |
|
alpha_{t_n} = \sqrt{\hat{alpha_n}}, |
|
and |
|
log(alpha_{t_n}) = 0.5 * log(\hat{alpha_n}). |
|
|
|
|
|
2. For continuous-time DPMs: |
|
|
|
We support two types of VPSDEs: linear (DDPM) and cosine (improved-DDPM). The hyperparameters for the noise |
|
schedule are the default settings in DDPM and improved-DDPM: |
|
|
|
Args: |
|
beta_min: A `float` number. The smallest beta for the linear schedule. |
|
beta_max: A `float` number. The largest beta for the linear schedule. |
|
cosine_s: A `float` number. The hyperparameter in the cosine schedule. |
|
cosine_beta_max: A `float` number. The hyperparameter in the cosine schedule. |
|
T: A `float` number. The ending time of the forward process. |
|
|
|
=============================================================== |
|
|
|
Args: |
|
schedule: A `str`. The noise schedule of the forward SDE. 'discrete' for discrete-time DPMs, |
|
'linear' or 'cosine' for continuous-time DPMs. |
|
Returns: |
|
A wrapper object of the forward SDE (VP type). |
|
|
|
=============================================================== |
|
|
|
Example: |
|
|
|
# For discrete-time DPMs, given betas (the beta array for n = 0, 1, ..., N - 1): |
|
>>> ns = NoiseScheduleVP('discrete', betas=betas) |
|
|
|
# For discrete-time DPMs, given alphas_cumprod (the \hat{alpha_n} array for n = 0, 1, ..., N - 1): |
|
>>> ns = NoiseScheduleVP('discrete', alphas_cumprod=alphas_cumprod) |
|
|
|
# For continuous-time DPMs (VPSDE), linear schedule: |
|
>>> ns = NoiseScheduleVP('linear', continuous_beta_0=0.1, continuous_beta_1=20.) |
|
|
|
""" |
|
|
|
if schedule not in ['discrete', 'linear', 'cosine']: |
|
raise ValueError("Unsupported noise schedule {}. The schedule needs to be 'discrete' or 'linear' or 'cosine'".format(schedule)) |
|
|
|
self.schedule = schedule |
|
if schedule == 'discrete': |
|
if betas is not None: |
|
log_alphas = 0.5 * torch.log(1 - betas).cumsum(dim=0) |
|
else: |
|
assert alphas_cumprod is not None |
|
log_alphas = 0.5 * torch.log(alphas_cumprod) |
|
self.total_N = len(log_alphas) |
|
self.T = 1. |
|
self.t_array = torch.linspace(0., 1., self.total_N + 1)[1:].reshape((1, -1)) |
|
self.log_alpha_array = log_alphas.reshape((1, -1,)) |
|
else: |
|
self.total_N = 1000 |
|
self.beta_0 = continuous_beta_0 |
|
self.beta_1 = continuous_beta_1 |
|
self.cosine_s = 0.008 |
|
self.cosine_beta_max = 999. |
|
self.cosine_t_max = math.atan(self.cosine_beta_max * (1. + self.cosine_s) / math.pi) * 2. * (1. + self.cosine_s) / math.pi - self.cosine_s |
|
self.cosine_log_alpha_0 = math.log(math.cos(self.cosine_s / (1. + self.cosine_s) * math.pi / 2.)) |
|
self.schedule = schedule |
|
if schedule == 'cosine': |
|
|
|
|
|
self.T = 0.9946 |
|
else: |
|
self.T = 1. |
|
|
|
def marginal_log_mean_coeff(self, t): |
|
""" |
|
Compute log(alpha_t) of a given continuous-time label t in [0, T]. |
|
""" |
|
if self.schedule == 'discrete': |
|
return interpolate_fn(t.reshape((-1, 1)), self.t_array.to(t.device), self.log_alpha_array.to(t.device)).reshape((-1)) |
|
elif self.schedule == 'linear': |
|
return -0.25 * t ** 2 * (self.beta_1 - self.beta_0) - 0.5 * t * self.beta_0 |
|
elif self.schedule == 'cosine': |
|
log_alpha_fn = lambda s: torch.log(torch.cos((s + self.cosine_s) / (1. + self.cosine_s) * math.pi / 2.)) |
|
log_alpha_t = log_alpha_fn(t) - self.cosine_log_alpha_0 |
|
return log_alpha_t |
|
|
|
def marginal_alpha(self, t): |
|
""" |
|
Compute alpha_t of a given continuous-time label t in [0, T]. |
|
""" |
|
return torch.exp(self.marginal_log_mean_coeff(t)) |
|
|
|
def marginal_std(self, t): |
|
""" |
|
Compute sigma_t of a given continuous-time label t in [0, T]. |
|
""" |
|
return torch.sqrt(1. - torch.exp(2. * self.marginal_log_mean_coeff(t))) |
|
|
|
def marginal_lambda(self, t): |
|
""" |
|
Compute lambda_t = log(alpha_t) - log(sigma_t) of a given continuous-time label t in [0, T]. |
|
""" |
|
log_mean_coeff = self.marginal_log_mean_coeff(t) |
|
log_std = 0.5 * torch.log(1. - torch.exp(2. * log_mean_coeff)) |
|
return log_mean_coeff - log_std |
|
|
|
def inverse_lambda(self, lamb): |
|
""" |
|
Compute the continuous-time label t in [0, T] of a given half-logSNR lambda_t. |
|
""" |
|
if self.schedule == 'linear': |
|
tmp = 2. * (self.beta_1 - self.beta_0) * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb)) |
|
Delta = self.beta_0**2 + tmp |
|
return tmp / (torch.sqrt(Delta) + self.beta_0) / (self.beta_1 - self.beta_0) |
|
elif self.schedule == 'discrete': |
|
log_alpha = -0.5 * torch.logaddexp(torch.zeros((1,)).to(lamb.device), -2. * lamb) |
|
t = interpolate_fn(log_alpha.reshape((-1, 1)), torch.flip(self.log_alpha_array.to(lamb.device), [1]), torch.flip(self.t_array.to(lamb.device), [1])) |
|
return t.reshape((-1,)) |
|
else: |
|
log_alpha = -0.5 * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb)) |
|
t_fn = lambda log_alpha_t: torch.arccos(torch.exp(log_alpha_t + self.cosine_log_alpha_0)) * 2. * (1. + self.cosine_s) / math.pi - self.cosine_s |
|
t = t_fn(log_alpha) |
|
return t |
|
|
|
|
|
def model_wrapper( |
|
model, |
|
noise_schedule, |
|
model_type="noise", |
|
model_kwargs={}, |
|
guidance_type="uncond", |
|
condition=None, |
|
unconditional_condition=None, |
|
guidance_scale=1., |
|
classifier_fn=None, |
|
classifier_kwargs={}, |
|
): |
|
"""Create a wrapper function for the noise prediction model. |
|
|
|
DPM-Solver needs to solve the continuous-time diffusion ODEs. For DPMs trained on discrete-time labels, we need to |
|
firstly wrap the model function to a noise prediction model that accepts the continuous time as the input. |
|
|
|
We support four types of the diffusion model by setting `model_type`: |
|
|
|
1. "noise": noise prediction model. (Trained by predicting noise). |
|
|
|
2. "x_start": data prediction model. (Trained by predicting the data x_0 at time 0). |
|
|
|
3. "v": velocity prediction model. (Trained by predicting the velocity). |
|
The "v" prediction is derivation detailed in Appendix D of [1], and is used in Imagen-Video [2]. |
|
|
|
[1] Salimans, Tim, and Jonathan Ho. "Progressive distillation for fast sampling of diffusion models." |
|
arXiv preprint arXiv:2202.00512 (2022). |
|
[2] Ho, Jonathan, et al. "Imagen Video: High Definition Video Generation with Diffusion Models." |
|
arXiv preprint arXiv:2210.02303 (2022). |
|
|
|
4. "score": marginal score function. (Trained by denoising score matching). |
|
Note that the score function and the noise prediction model follows a simple relationship: |
|
``` |
|
noise(x_t, t) = -sigma_t * score(x_t, t) |
|
``` |
|
|
|
We support three types of guided sampling by DPMs by setting `guidance_type`: |
|
1. "uncond": unconditional sampling by DPMs. |
|
The input `model` has the following format: |
|
`` |
|
model(x, t_input, **model_kwargs) -> noise | x_start | v | score |
|
`` |
|
|
|
2. "classifier": classifier guidance sampling [3] by DPMs and another classifier. |
|
The input `model` has the following format: |
|
`` |
|
model(x, t_input, **model_kwargs) -> noise | x_start | v | score |
|
`` |
|
|
|
The input `classifier_fn` has the following format: |
|
`` |
|
classifier_fn(x, t_input, cond, **classifier_kwargs) -> logits(x, t_input, cond) |
|
`` |
|
|
|
[3] P. Dhariwal and A. Q. Nichol, "Diffusion models beat GANs on image synthesis," |
|
in Advances in Neural Information Processing Systems, vol. 34, 2021, pp. 8780-8794. |
|
|
|
3. "classifier-free": classifier-free guidance sampling by conditional DPMs. |
|
The input `model` has the following format: |
|
`` |
|
model(x, t_input, cond, **model_kwargs) -> noise | x_start | v | score |
|
`` |
|
And if cond == `unconditional_condition`, the model output is the unconditional DPM output. |
|
|
|
[4] Ho, Jonathan, and Tim Salimans. "Classifier-free diffusion guidance." |
|
arXiv preprint arXiv:2207.12598 (2022). |
|
|
|
|
|
The `t_input` is the time label of the model, which may be discrete-time labels (i.e. 0 to 999) |
|
or continuous-time labels (i.e. epsilon to T). |
|
|
|
We wrap the model function to accept only `x` and `t_continuous` as inputs, and outputs the predicted noise: |
|
`` |
|
def model_fn(x, t_continuous) -> noise: |
|
t_input = get_model_input_time(t_continuous) |
|
return noise_pred(model, x, t_input, **model_kwargs) |
|
`` |
|
where `t_continuous` is the continuous time labels (i.e. epsilon to T). And we use `model_fn` for DPM-Solver. |
|
|
|
=============================================================== |
|
|
|
Args: |
|
model: A diffusion model with the corresponding format described above. |
|
noise_schedule: A noise schedule object, such as NoiseScheduleVP. |
|
model_type: A `str`. The parameterization type of the diffusion model. |
|
"noise" or "x_start" or "v" or "score". |
|
model_kwargs: A `dict`. A dict for the other inputs of the model function. |
|
guidance_type: A `str`. The type of the guidance for sampling. |
|
"uncond" or "classifier" or "classifier-free". |
|
condition: A pytorch tensor. The condition for the guided sampling. |
|
Only used for "classifier" or "classifier-free" guidance type. |
|
unconditional_condition: A pytorch tensor. The condition for the unconditional sampling. |
|
Only used for "classifier-free" guidance type. |
|
guidance_scale: A `float`. The scale for the guided sampling. |
|
classifier_fn: A classifier function. Only used for the classifier guidance. |
|
classifier_kwargs: A `dict`. A dict for the other inputs of the classifier function. |
|
Returns: |
|
A noise prediction model that accepts the noised data and the continuous time as the inputs. |
|
""" |
|
|
|
def get_model_input_time(t_continuous): |
|
""" |
|
Convert the continuous-time `t_continuous` (in [epsilon, T]) to the model input time. |
|
For discrete-time DPMs, we convert `t_continuous` in [1 / N, 1] to `t_input` in [0, 1000 * (N - 1) / N]. |
|
For continuous-time DPMs, we just use `t_continuous`. |
|
""" |
|
if noise_schedule.schedule == 'discrete': |
|
return (t_continuous - 1. / noise_schedule.total_N) * 1000. |
|
else: |
|
return t_continuous |
|
|
|
def noise_pred_fn(x, t_continuous, cond=None): |
|
if t_continuous.reshape((-1,)).shape[0] == 1: |
|
t_continuous = t_continuous.expand((x.shape[0])) |
|
t_input = get_model_input_time(t_continuous) |
|
output = model(x, t_input, **model_kwargs) |
|
if model_type == "noise": |
|
return output |
|
elif model_type == "x_start": |
|
alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous) |
|
dims = x.dim() |
|
return (x - expand_dims(alpha_t, dims) * output) / expand_dims(sigma_t, dims) |
|
elif model_type == "v": |
|
alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous) |
|
dims = x.dim() |
|
return expand_dims(alpha_t, dims) * output + expand_dims(sigma_t, dims) * x |
|
elif model_type == "score": |
|
sigma_t = noise_schedule.marginal_std(t_continuous) |
|
dims = x.dim() |
|
return -expand_dims(sigma_t, dims) * output |
|
|
|
def cond_grad_fn(x, t_input): |
|
""" |
|
Compute the gradient of the classifier, i.e. nabla_{x} log p_t(cond | x_t). |
|
""" |
|
with torch.enable_grad(): |
|
x_in = x.detach().requires_grad_(True) |
|
log_prob = classifier_fn(x_in, t_input, condition, **classifier_kwargs) |
|
return torch.autograd.grad(log_prob.sum(), x_in)[0] |
|
|
|
def model_fn(x, t_continuous): |
|
""" |
|
The noise predicition model function that is used for DPM-Solver. |
|
""" |
|
if t_continuous.reshape((-1,)).shape[0] == 1: |
|
t_continuous = t_continuous.expand((x.shape[0])) |
|
if guidance_type == "uncond": |
|
return noise_pred_fn(x, t_continuous) |
|
elif guidance_type == "classifier": |
|
assert classifier_fn is not None |
|
t_input = get_model_input_time(t_continuous) |
|
cond_grad = cond_grad_fn(x, t_input) |
|
sigma_t = noise_schedule.marginal_std(t_continuous) |
|
noise = noise_pred_fn(x, t_continuous) |
|
return noise - guidance_scale * expand_dims(sigma_t, dims=cond_grad.dim()) * cond_grad |
|
elif guidance_type == "classifier-free": |
|
if guidance_scale == 1. or unconditional_condition is None: |
|
return noise_pred_fn(x, t_continuous, cond=condition) |
|
else: |
|
x_in = torch.cat([x] * 2) |
|
t_in = torch.cat([t_continuous] * 2) |
|
c_in = torch.cat([unconditional_condition, condition]) |
|
noise_uncond, noise = noise_pred_fn(x_in, t_in, cond=c_in).chunk(2) |
|
return noise_uncond + guidance_scale * (noise - noise_uncond) |
|
|
|
assert model_type in ["noise", "x_start", "v"] |
|
assert guidance_type in ["uncond", "classifier", "classifier-free"] |
|
return model_fn |
|
|
|
|
|
class UniPC: |
|
def __init__( |
|
self, |
|
model_fn, |
|
noise_schedule, |
|
predict_x0=True, |
|
thresholding=False, |
|
max_val=1., |
|
variant='bh1', |
|
noise_mask=None, |
|
masked_image=None, |
|
noise=None, |
|
): |
|
"""Construct a UniPC. |
|
|
|
We support both data_prediction and noise_prediction. |
|
""" |
|
self.model = model_fn |
|
self.noise_schedule = noise_schedule |
|
self.variant = variant |
|
self.predict_x0 = predict_x0 |
|
self.thresholding = thresholding |
|
self.max_val = max_val |
|
self.noise_mask = noise_mask |
|
self.masked_image = masked_image |
|
self.noise = noise |
|
|
|
def dynamic_thresholding_fn(self, x0, t=None): |
|
""" |
|
The dynamic thresholding method. |
|
""" |
|
dims = x0.dim() |
|
p = self.dynamic_thresholding_ratio |
|
s = torch.quantile(torch.abs(x0).reshape((x0.shape[0], -1)), p, dim=1) |
|
s = expand_dims(torch.maximum(s, self.thresholding_max_val * torch.ones_like(s).to(s.device)), dims) |
|
x0 = torch.clamp(x0, -s, s) / s |
|
return x0 |
|
|
|
def noise_prediction_fn(self, x, t): |
|
""" |
|
Return the noise prediction model. |
|
""" |
|
if self.noise_mask is not None: |
|
return self.model(x, t) * self.noise_mask |
|
else: |
|
return self.model(x, t) |
|
|
|
def data_prediction_fn(self, x, t): |
|
""" |
|
Return the data prediction model (with thresholding). |
|
""" |
|
noise = self.noise_prediction_fn(x, t) |
|
dims = x.dim() |
|
alpha_t, sigma_t = self.noise_schedule.marginal_alpha(t), self.noise_schedule.marginal_std(t) |
|
x0 = (x - expand_dims(sigma_t, dims) * noise) / expand_dims(alpha_t, dims) |
|
if self.thresholding: |
|
p = 0.995 |
|
s = torch.quantile(torch.abs(x0).reshape((x0.shape[0], -1)), p, dim=1) |
|
s = expand_dims(torch.maximum(s, self.max_val * torch.ones_like(s).to(s.device)), dims) |
|
x0 = torch.clamp(x0, -s, s) / s |
|
if self.noise_mask is not None: |
|
x0 = x0 * self.noise_mask + (1. - self.noise_mask) * self.masked_image |
|
return x0 |
|
|
|
def model_fn(self, x, t): |
|
""" |
|
Convert the model to the noise prediction model or the data prediction model. |
|
""" |
|
if self.predict_x0: |
|
return self.data_prediction_fn(x, t) |
|
else: |
|
return self.noise_prediction_fn(x, t) |
|
|
|
def get_time_steps(self, skip_type, t_T, t_0, N, device): |
|
"""Compute the intermediate time steps for sampling. |
|
""" |
|
if skip_type == 'logSNR': |
|
lambda_T = self.noise_schedule.marginal_lambda(torch.tensor(t_T).to(device)) |
|
lambda_0 = self.noise_schedule.marginal_lambda(torch.tensor(t_0).to(device)) |
|
logSNR_steps = torch.linspace(lambda_T.cpu().item(), lambda_0.cpu().item(), N + 1).to(device) |
|
return self.noise_schedule.inverse_lambda(logSNR_steps) |
|
elif skip_type == 'time_uniform': |
|
return torch.linspace(t_T, t_0, N + 1).to(device) |
|
elif skip_type == 'time_quadratic': |
|
t_order = 2 |
|
t = torch.linspace(t_T**(1. / t_order), t_0**(1. / t_order), N + 1).pow(t_order).to(device) |
|
return t |
|
else: |
|
raise ValueError("Unsupported skip_type {}, need to be 'logSNR' or 'time_uniform' or 'time_quadratic'".format(skip_type)) |
|
|
|
def get_orders_and_timesteps_for_singlestep_solver(self, steps, order, skip_type, t_T, t_0, device): |
|
""" |
|
Get the order of each step for sampling by the singlestep DPM-Solver. |
|
""" |
|
if order == 3: |
|
K = steps // 3 + 1 |
|
if steps % 3 == 0: |
|
orders = [3,] * (K - 2) + [2, 1] |
|
elif steps % 3 == 1: |
|
orders = [3,] * (K - 1) + [1] |
|
else: |
|
orders = [3,] * (K - 1) + [2] |
|
elif order == 2: |
|
if steps % 2 == 0: |
|
K = steps // 2 |
|
orders = [2,] * K |
|
else: |
|
K = steps // 2 + 1 |
|
orders = [2,] * (K - 1) + [1] |
|
elif order == 1: |
|
K = steps |
|
orders = [1,] * steps |
|
else: |
|
raise ValueError("'order' must be '1' or '2' or '3'.") |
|
if skip_type == 'logSNR': |
|
|
|
timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, K, device) |
|
else: |
|
timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, steps, device)[torch.cumsum(torch.tensor([0,] + orders), 0).to(device)] |
|
return timesteps_outer, orders |
|
|
|
def denoise_to_zero_fn(self, x, s): |
|
""" |
|
Denoise at the final step, which is equivalent to solve the ODE from lambda_s to infty by first-order discretization. |
|
""" |
|
return self.data_prediction_fn(x, s) |
|
|
|
def multistep_uni_pc_update(self, x, model_prev_list, t_prev_list, t, order, **kwargs): |
|
if len(t.shape) == 0: |
|
t = t.view(-1) |
|
if 'bh' in self.variant: |
|
return self.multistep_uni_pc_bh_update(x, model_prev_list, t_prev_list, t, order, **kwargs) |
|
else: |
|
assert self.variant == 'vary_coeff' |
|
return self.multistep_uni_pc_vary_update(x, model_prev_list, t_prev_list, t, order, **kwargs) |
|
|
|
def multistep_uni_pc_vary_update(self, x, model_prev_list, t_prev_list, t, order, use_corrector=True): |
|
print(f'using unified predictor-corrector with order {order} (solver type: vary coeff)') |
|
ns = self.noise_schedule |
|
assert order <= len(model_prev_list) |
|
|
|
|
|
t_prev_0 = t_prev_list[-1] |
|
lambda_prev_0 = ns.marginal_lambda(t_prev_0) |
|
lambda_t = ns.marginal_lambda(t) |
|
model_prev_0 = model_prev_list[-1] |
|
sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t) |
|
log_alpha_t = ns.marginal_log_mean_coeff(t) |
|
alpha_t = torch.exp(log_alpha_t) |
|
|
|
h = lambda_t - lambda_prev_0 |
|
|
|
rks = [] |
|
D1s = [] |
|
for i in range(1, order): |
|
t_prev_i = t_prev_list[-(i + 1)] |
|
model_prev_i = model_prev_list[-(i + 1)] |
|
lambda_prev_i = ns.marginal_lambda(t_prev_i) |
|
rk = (lambda_prev_i - lambda_prev_0) / h |
|
rks.append(rk) |
|
D1s.append((model_prev_i - model_prev_0) / rk) |
|
|
|
rks.append(1.) |
|
rks = torch.tensor(rks, device=x.device) |
|
|
|
K = len(rks) |
|
|
|
C = [] |
|
|
|
col = torch.ones_like(rks) |
|
for k in range(1, K + 1): |
|
C.append(col) |
|
col = col * rks / (k + 1) |
|
C = torch.stack(C, dim=1) |
|
|
|
if len(D1s) > 0: |
|
D1s = torch.stack(D1s, dim=1) |
|
C_inv_p = torch.linalg.inv(C[:-1, :-1]) |
|
A_p = C_inv_p |
|
|
|
if use_corrector: |
|
print('using corrector') |
|
C_inv = torch.linalg.inv(C) |
|
A_c = C_inv |
|
|
|
hh = -h if self.predict_x0 else h |
|
h_phi_1 = torch.expm1(hh) |
|
h_phi_ks = [] |
|
factorial_k = 1 |
|
h_phi_k = h_phi_1 |
|
for k in range(1, K + 2): |
|
h_phi_ks.append(h_phi_k) |
|
h_phi_k = h_phi_k / hh - 1 / factorial_k |
|
factorial_k *= (k + 1) |
|
|
|
model_t = None |
|
if self.predict_x0: |
|
x_t_ = ( |
|
sigma_t / sigma_prev_0 * x |
|
- alpha_t * h_phi_1 * model_prev_0 |
|
) |
|
|
|
x_t = x_t_ |
|
if len(D1s) > 0: |
|
|
|
for k in range(K - 1): |
|
x_t = x_t - alpha_t * h_phi_ks[k + 1] * torch.einsum('bkchw,k->bchw', D1s, A_p[k]) |
|
|
|
if use_corrector: |
|
model_t = self.model_fn(x_t, t) |
|
D1_t = (model_t - model_prev_0) |
|
x_t = x_t_ |
|
k = 0 |
|
for k in range(K - 1): |
|
x_t = x_t - alpha_t * h_phi_ks[k + 1] * torch.einsum('bkchw,k->bchw', D1s, A_c[k][:-1]) |
|
x_t = x_t - alpha_t * h_phi_ks[K] * (D1_t * A_c[k][-1]) |
|
else: |
|
log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t) |
|
x_t_ = ( |
|
(torch.exp(log_alpha_t - log_alpha_prev_0)) * x |
|
- (sigma_t * h_phi_1) * model_prev_0 |
|
) |
|
|
|
x_t = x_t_ |
|
if len(D1s) > 0: |
|
|
|
for k in range(K - 1): |
|
x_t = x_t - sigma_t * h_phi_ks[k + 1] * torch.einsum('bkchw,k->bchw', D1s, A_p[k]) |
|
|
|
if use_corrector: |
|
model_t = self.model_fn(x_t, t) |
|
D1_t = (model_t - model_prev_0) |
|
x_t = x_t_ |
|
k = 0 |
|
for k in range(K - 1): |
|
x_t = x_t - sigma_t * h_phi_ks[k + 1] * torch.einsum('bkchw,k->bchw', D1s, A_c[k][:-1]) |
|
x_t = x_t - sigma_t * h_phi_ks[K] * (D1_t * A_c[k][-1]) |
|
return x_t, model_t |
|
|
|
def multistep_uni_pc_bh_update(self, x, model_prev_list, t_prev_list, t, order, x_t=None, use_corrector=True): |
|
|
|
ns = self.noise_schedule |
|
assert order <= len(model_prev_list) |
|
dims = x.dim() |
|
|
|
|
|
t_prev_0 = t_prev_list[-1] |
|
lambda_prev_0 = ns.marginal_lambda(t_prev_0) |
|
lambda_t = ns.marginal_lambda(t) |
|
model_prev_0 = model_prev_list[-1] |
|
sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t) |
|
log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t) |
|
alpha_t = torch.exp(log_alpha_t) |
|
|
|
h = lambda_t - lambda_prev_0 |
|
|
|
rks = [] |
|
D1s = [] |
|
for i in range(1, order): |
|
t_prev_i = t_prev_list[-(i + 1)] |
|
model_prev_i = model_prev_list[-(i + 1)] |
|
lambda_prev_i = ns.marginal_lambda(t_prev_i) |
|
rk = ((lambda_prev_i - lambda_prev_0) / h)[0] |
|
rks.append(rk) |
|
D1s.append((model_prev_i - model_prev_0) / rk) |
|
|
|
rks.append(1.) |
|
rks = torch.tensor(rks, device=x.device) |
|
|
|
R = [] |
|
b = [] |
|
|
|
hh = -h[0] if self.predict_x0 else h[0] |
|
h_phi_1 = torch.expm1(hh) |
|
h_phi_k = h_phi_1 / hh - 1 |
|
|
|
factorial_i = 1 |
|
|
|
if self.variant == 'bh1': |
|
B_h = hh |
|
elif self.variant == 'bh2': |
|
B_h = torch.expm1(hh) |
|
else: |
|
raise NotImplementedError() |
|
|
|
for i in range(1, order + 1): |
|
R.append(torch.pow(rks, i - 1)) |
|
b.append(h_phi_k * factorial_i / B_h) |
|
factorial_i *= (i + 1) |
|
h_phi_k = h_phi_k / hh - 1 / factorial_i |
|
|
|
R = torch.stack(R) |
|
b = torch.tensor(b, device=x.device) |
|
|
|
|
|
use_predictor = len(D1s) > 0 and x_t is None |
|
if len(D1s) > 0: |
|
D1s = torch.stack(D1s, dim=1) |
|
if x_t is None: |
|
|
|
if order == 2: |
|
rhos_p = torch.tensor([0.5], device=b.device) |
|
else: |
|
rhos_p = torch.linalg.solve(R[:-1, :-1], b[:-1]) |
|
else: |
|
D1s = None |
|
|
|
if use_corrector: |
|
|
|
|
|
if order == 1: |
|
rhos_c = torch.tensor([0.5], device=b.device) |
|
else: |
|
rhos_c = torch.linalg.solve(R, b) |
|
|
|
model_t = None |
|
if self.predict_x0: |
|
x_t_ = ( |
|
expand_dims(sigma_t / sigma_prev_0, dims) * x |
|
- expand_dims(alpha_t * h_phi_1, dims)* model_prev_0 |
|
) |
|
|
|
if x_t is None: |
|
if use_predictor: |
|
pred_res = torch.einsum('k,bkchw->bchw', rhos_p, D1s) |
|
else: |
|
pred_res = 0 |
|
x_t = x_t_ - expand_dims(alpha_t * B_h, dims) * pred_res |
|
|
|
if use_corrector: |
|
model_t = self.model_fn(x_t, t) |
|
if D1s is not None: |
|
corr_res = torch.einsum('k,bkchw->bchw', rhos_c[:-1], D1s) |
|
else: |
|
corr_res = 0 |
|
D1_t = (model_t - model_prev_0) |
|
x_t = x_t_ - expand_dims(alpha_t * B_h, dims) * (corr_res + rhos_c[-1] * D1_t) |
|
else: |
|
x_t_ = ( |
|
expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x |
|
- expand_dims(sigma_t * h_phi_1, dims) * model_prev_0 |
|
) |
|
if x_t is None: |
|
if use_predictor: |
|
pred_res = torch.einsum('k,bkchw->bchw', rhos_p, D1s) |
|
else: |
|
pred_res = 0 |
|
x_t = x_t_ - expand_dims(sigma_t * B_h, dims) * pred_res |
|
|
|
if use_corrector: |
|
model_t = self.model_fn(x_t, t) |
|
if D1s is not None: |
|
corr_res = torch.einsum('k,bkchw->bchw', rhos_c[:-1], D1s) |
|
else: |
|
corr_res = 0 |
|
D1_t = (model_t - model_prev_0) |
|
x_t = x_t_ - expand_dims(sigma_t * B_h, dims) * (corr_res + rhos_c[-1] * D1_t) |
|
return x_t, model_t |
|
|
|
|
|
def sample(self, x, timesteps, t_start=None, t_end=None, order=3, skip_type='time_uniform', |
|
method='singlestep', lower_order_final=True, denoise_to_zero=False, solver_type='dpm_solver', |
|
atol=0.0078, rtol=0.05, corrector=False, callback=None, disable_pbar=False |
|
): |
|
|
|
|
|
device = x.device |
|
steps = len(timesteps) - 1 |
|
if method == 'multistep': |
|
assert steps >= order |
|
|
|
assert timesteps.shape[0] - 1 == steps |
|
|
|
for step_index in trange(steps, disable=disable_pbar): |
|
if self.noise_mask is not None: |
|
x = x * self.noise_mask + (1. - self.noise_mask) * (self.masked_image * self.noise_schedule.marginal_alpha(timesteps[step_index]) + self.noise * self.noise_schedule.marginal_std(timesteps[step_index])) |
|
if step_index == 0: |
|
vec_t = timesteps[0].expand((x.shape[0])) |
|
model_prev_list = [self.model_fn(x, vec_t)] |
|
t_prev_list = [vec_t] |
|
elif step_index < order: |
|
init_order = step_index |
|
|
|
|
|
vec_t = timesteps[init_order].expand(x.shape[0]) |
|
x, model_x = self.multistep_uni_pc_update(x, model_prev_list, t_prev_list, vec_t, init_order, use_corrector=True) |
|
if model_x is None: |
|
model_x = self.model_fn(x, vec_t) |
|
model_prev_list.append(model_x) |
|
t_prev_list.append(vec_t) |
|
else: |
|
extra_final_step = 0 |
|
if step_index == (steps - 1): |
|
extra_final_step = 1 |
|
for step in range(step_index, step_index + 1 + extra_final_step): |
|
vec_t = timesteps[step].expand(x.shape[0]) |
|
if lower_order_final: |
|
step_order = min(order, steps + 1 - step) |
|
else: |
|
step_order = order |
|
|
|
if step == steps: |
|
|
|
use_corrector = False |
|
else: |
|
use_corrector = True |
|
x, model_x = self.multistep_uni_pc_update(x, model_prev_list, t_prev_list, vec_t, step_order, use_corrector=use_corrector) |
|
for i in range(order - 1): |
|
t_prev_list[i] = t_prev_list[i + 1] |
|
model_prev_list[i] = model_prev_list[i + 1] |
|
t_prev_list[-1] = vec_t |
|
|
|
if step < steps: |
|
if model_x is None: |
|
model_x = self.model_fn(x, vec_t) |
|
model_prev_list[-1] = model_x |
|
if callback is not None: |
|
callback(step_index, model_prev_list[-1], x, steps) |
|
else: |
|
raise NotImplementedError() |
|
|
|
|
|
return x |
|
|
|
|
|
|
|
|
|
|
|
|
|
def interpolate_fn(x, xp, yp): |
|
""" |
|
A piecewise linear function y = f(x), using xp and yp as keypoints. |
|
We implement f(x) in a differentiable way (i.e. applicable for autograd). |
|
The function f(x) is well-defined for all x-axis. (For x beyond the bounds of xp, we use the outmost points of xp to define the linear function.) |
|
|
|
Args: |
|
x: PyTorch tensor with shape [N, C], where N is the batch size, C is the number of channels (we use C = 1 for DPM-Solver). |
|
xp: PyTorch tensor with shape [C, K], where K is the number of keypoints. |
|
yp: PyTorch tensor with shape [C, K]. |
|
Returns: |
|
The function values f(x), with shape [N, C]. |
|
""" |
|
N, K = x.shape[0], xp.shape[1] |
|
all_x = torch.cat([x.unsqueeze(2), xp.unsqueeze(0).repeat((N, 1, 1))], dim=2) |
|
sorted_all_x, x_indices = torch.sort(all_x, dim=2) |
|
x_idx = torch.argmin(x_indices, dim=2) |
|
cand_start_idx = x_idx - 1 |
|
start_idx = torch.where( |
|
torch.eq(x_idx, 0), |
|
torch.tensor(1, device=x.device), |
|
torch.where( |
|
torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx, |
|
), |
|
) |
|
end_idx = torch.where(torch.eq(start_idx, cand_start_idx), start_idx + 2, start_idx + 1) |
|
start_x = torch.gather(sorted_all_x, dim=2, index=start_idx.unsqueeze(2)).squeeze(2) |
|
end_x = torch.gather(sorted_all_x, dim=2, index=end_idx.unsqueeze(2)).squeeze(2) |
|
start_idx2 = torch.where( |
|
torch.eq(x_idx, 0), |
|
torch.tensor(0, device=x.device), |
|
torch.where( |
|
torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx, |
|
), |
|
) |
|
y_positions_expanded = yp.unsqueeze(0).expand(N, -1, -1) |
|
start_y = torch.gather(y_positions_expanded, dim=2, index=start_idx2.unsqueeze(2)).squeeze(2) |
|
end_y = torch.gather(y_positions_expanded, dim=2, index=(start_idx2 + 1).unsqueeze(2)).squeeze(2) |
|
cand = start_y + (x - start_x) * (end_y - start_y) / (end_x - start_x) |
|
return cand |
|
|
|
|
|
def expand_dims(v, dims): |
|
""" |
|
Expand the tensor `v` to the dim `dims`. |
|
|
|
Args: |
|
`v`: a PyTorch tensor with shape [N]. |
|
`dim`: a `int`. |
|
Returns: |
|
a PyTorch tensor with shape [N, 1, 1, ..., 1] and the total dimension is `dims`. |
|
""" |
|
return v[(...,) + (None,)*(dims - 1)] |
|
|
|
|
|
class SigmaConvert: |
|
schedule = "" |
|
def marginal_log_mean_coeff(self, sigma): |
|
return 0.5 * torch.log(1 / ((sigma * sigma) + 1)) |
|
|
|
def marginal_alpha(self, t): |
|
return torch.exp(self.marginal_log_mean_coeff(t)) |
|
|
|
def marginal_std(self, t): |
|
return torch.sqrt(1. - torch.exp(2. * self.marginal_log_mean_coeff(t))) |
|
|
|
def marginal_lambda(self, t): |
|
""" |
|
Compute lambda_t = log(alpha_t) - log(sigma_t) of a given continuous-time label t in [0, T]. |
|
""" |
|
log_mean_coeff = self.marginal_log_mean_coeff(t) |
|
log_std = 0.5 * torch.log(1. - torch.exp(2. * log_mean_coeff)) |
|
return log_mean_coeff - log_std |
|
|
|
def predict_eps_sigma(model, input, sigma_in, **kwargs): |
|
sigma = sigma_in.view(sigma_in.shape[:1] + (1,) * (input.ndim - 1)) |
|
input = input * ((sigma ** 2 + 1.0) ** 0.5) |
|
return (input - model(input, sigma_in, **kwargs)) / sigma |
|
|
|
|
|
def sample_unipc(model, noise, image, sigmas, max_denoise, extra_args=None, callback=None, disable=False, noise_mask=None, variant='bh1'): |
|
timesteps = sigmas.clone() |
|
if sigmas[-1] == 0: |
|
timesteps = sigmas[:] |
|
timesteps[-1] = 0.001 |
|
else: |
|
timesteps = sigmas.clone() |
|
ns = SigmaConvert() |
|
|
|
if image is not None: |
|
img = image * ns.marginal_alpha(timesteps[0]) |
|
if max_denoise: |
|
noise_mult = 1.0 |
|
else: |
|
noise_mult = ns.marginal_std(timesteps[0]) |
|
img += noise * noise_mult |
|
else: |
|
img = noise |
|
|
|
model_type = "noise" |
|
|
|
model_fn = model_wrapper( |
|
lambda input, sigma, **kwargs: predict_eps_sigma(model, input, sigma, **kwargs), |
|
ns, |
|
model_type=model_type, |
|
guidance_type="uncond", |
|
model_kwargs=extra_args, |
|
) |
|
|
|
order = min(3, len(timesteps) - 2) |
|
uni_pc = UniPC(model_fn, ns, predict_x0=True, thresholding=False, noise_mask=noise_mask, masked_image=image, noise=noise, variant=variant) |
|
x = uni_pc.sample(img, timesteps=timesteps, skip_type="time_uniform", method="multistep", order=order, lower_order_final=True, callback=callback, disable_pbar=disable) |
|
x /= ns.marginal_alpha(timesteps[-1]) |
|
return x |
|
|