AIImages / modules /meta_parser.py
Adityadn's picture
Upload 524 files
617d388 verified
raw
history blame
22 kB
import json
import os
import re
from abc import ABC, abstractmethod
from pathlib import Path
import gradio as gr
from PIL import Image
import fooocus_version
import modules.config
import modules.sdxl_styles
from modules.flags import MetadataScheme, Performance, Steps
from modules.flags import SAMPLERS, CIVITAI_NO_KARRAS
from modules.util import quote, unquote, extract_styles_from_prompt, is_json, get_file_from_folder_list, calculate_sha256
re_param_code = r'\s*(\w[\w \-/]+):\s*("(?:\\.|[^\\"])+"|[^,]*)(?:,|$)'
re_param = re.compile(re_param_code)
re_imagesize = re.compile(r"^(\d+)x(\d+)$")
hash_cache = {}
def load_parameter_button_click(raw_metadata: dict | str, is_generating: bool):
loaded_parameter_dict = raw_metadata
if isinstance(raw_metadata, str):
loaded_parameter_dict = json.loads(raw_metadata)
assert isinstance(loaded_parameter_dict, dict)
results = [len(loaded_parameter_dict) > 0, 1]
get_str('prompt', 'Prompt', loaded_parameter_dict, results)
get_str('negative_prompt', 'Negative Prompt', loaded_parameter_dict, results)
get_list('styles', 'Styles', loaded_parameter_dict, results)
get_str('performance', 'Performance', loaded_parameter_dict, results)
get_steps('steps', 'Steps', loaded_parameter_dict, results)
get_float('overwrite_switch', 'Overwrite Switch', loaded_parameter_dict, results)
get_resolution('resolution', 'Resolution', loaded_parameter_dict, results)
get_float('guidance_scale', 'Guidance Scale', loaded_parameter_dict, results)
get_float('sharpness', 'Sharpness', loaded_parameter_dict, results)
get_adm_guidance('adm_guidance', 'ADM Guidance', loaded_parameter_dict, results)
get_str('refiner_swap_method', 'Refiner Swap Method', loaded_parameter_dict, results)
get_float('adaptive_cfg', 'CFG Mimicking from TSNR', loaded_parameter_dict, results)
get_str('base_model', 'Base Model', loaded_parameter_dict, results)
get_str('refiner_model', 'Refiner Model', loaded_parameter_dict, results)
get_float('refiner_switch', 'Refiner Switch', loaded_parameter_dict, results)
get_str('sampler', 'Sampler', loaded_parameter_dict, results)
get_str('scheduler', 'Scheduler', loaded_parameter_dict, results)
get_seed('seed', 'Seed', loaded_parameter_dict, results)
if is_generating:
results.append(gr.update())
else:
results.append(gr.update(visible=True))
results.append(gr.update(visible=False))
get_freeu('freeu', 'FreeU', loaded_parameter_dict, results)
for i in range(modules.config.default_max_lora_number):
get_lora(f'lora_combined_{i + 1}', f'LoRA {i + 1}', loaded_parameter_dict, results)
return results
def get_str(key: str, fallback: str | None, source_dict: dict, results: list, default=None):
try:
h = source_dict.get(key, source_dict.get(fallback, default))
assert isinstance(h, str)
results.append(h)
except:
results.append(gr.update())
def get_list(key: str, fallback: str | None, source_dict: dict, results: list, default=None):
try:
h = source_dict.get(key, source_dict.get(fallback, default))
h = eval(h)
assert isinstance(h, list)
results.append(h)
except:
results.append(gr.update())
def get_float(key: str, fallback: str | None, source_dict: dict, results: list, default=None):
try:
h = source_dict.get(key, source_dict.get(fallback, default))
assert h is not None
h = float(h)
results.append(h)
except:
results.append(gr.update())
def get_steps(key: str, fallback: str | None, source_dict: dict, results: list, default=None):
try:
h = source_dict.get(key, source_dict.get(fallback, default))
assert h is not None
h = int(h)
# if not in steps or in steps and performance is not the same
if h not in iter(Steps) or Steps(h).name.casefold() != source_dict.get('performance', '').replace(' ', '_').casefold():
results.append(h)
return
results.append(-1)
except:
results.append(-1)
def get_resolution(key: str, fallback: str | None, source_dict: dict, results: list, default=None):
try:
h = source_dict.get(key, source_dict.get(fallback, default))
width, height = eval(h)
formatted = modules.config.add_ratio(f'{width}*{height}')
if formatted in modules.config.available_aspect_ratios:
results.append(formatted)
results.append(-1)
results.append(-1)
else:
results.append(gr.update())
results.append(int(width))
results.append(int(height))
except:
results.append(gr.update())
results.append(gr.update())
results.append(gr.update())
def get_seed(key: str, fallback: str | None, source_dict: dict, results: list, default=None):
try:
h = source_dict.get(key, source_dict.get(fallback, default))
assert h is not None
h = int(h)
results.append(False)
results.append(h)
except:
results.append(gr.update())
results.append(gr.update())
def get_adm_guidance(key: str, fallback: str | None, source_dict: dict, results: list, default=None):
try:
h = source_dict.get(key, source_dict.get(fallback, default))
p, n, e = eval(h)
results.append(float(p))
results.append(float(n))
results.append(float(e))
except:
results.append(gr.update())
results.append(gr.update())
results.append(gr.update())
def get_freeu(key: str, fallback: str | None, source_dict: dict, results: list, default=None):
try:
h = source_dict.get(key, source_dict.get(fallback, default))
b1, b2, s1, s2 = eval(h)
results.append(True)
results.append(float(b1))
results.append(float(b2))
results.append(float(s1))
results.append(float(s2))
except:
results.append(False)
results.append(gr.update())
results.append(gr.update())
results.append(gr.update())
results.append(gr.update())
def get_lora(key: str, fallback: str | None, source_dict: dict, results: list):
try:
n, w = source_dict.get(key, source_dict.get(fallback)).split(' : ')
w = float(w)
results.append(True)
results.append(n)
results.append(w)
except:
results.append(True)
results.append('None')
results.append(1)
def get_sha256(filepath):
global hash_cache
if filepath not in hash_cache:
hash_cache[filepath] = calculate_sha256(filepath)
return hash_cache[filepath]
def parse_meta_from_preset(preset_content):
assert isinstance(preset_content, dict)
preset_prepared = {}
items = preset_content
for settings_key, meta_key in modules.config.possible_preset_keys.items():
if settings_key == "default_loras":
loras = getattr(modules.config, settings_key)
if settings_key in items:
loras = items[settings_key]
for index, lora in enumerate(loras[:5]):
preset_prepared[f'lora_combined_{index + 1}'] = ' : '.join(map(str, lora))
elif settings_key == "default_aspect_ratio":
if settings_key in items and items[settings_key] is not None:
default_aspect_ratio = items[settings_key]
width, height = default_aspect_ratio.split('*')
else:
default_aspect_ratio = getattr(modules.config, settings_key)
width, height = default_aspect_ratio.split('×')
height = height[:height.index(" ")]
preset_prepared[meta_key] = (width, height)
else:
preset_prepared[meta_key] = items[settings_key] if settings_key in items and items[
settings_key] is not None else getattr(modules.config, settings_key)
if settings_key == "default_styles" or settings_key == "default_aspect_ratio":
preset_prepared[meta_key] = str(preset_prepared[meta_key])
return preset_prepared
class MetadataParser(ABC):
def __init__(self):
self.raw_prompt: str = ''
self.full_prompt: str = ''
self.raw_negative_prompt: str = ''
self.full_negative_prompt: str = ''
self.steps: int = 30
self.base_model_name: str = ''
self.base_model_hash: str = ''
self.refiner_model_name: str = ''
self.refiner_model_hash: str = ''
self.loras: list = []
@abstractmethod
def get_scheme(self) -> MetadataScheme:
raise NotImplementedError
@abstractmethod
def parse_json(self, metadata: dict | str) -> dict:
raise NotImplementedError
@abstractmethod
def parse_string(self, metadata: dict) -> str:
raise NotImplementedError
def set_data(self, raw_prompt, full_prompt, raw_negative_prompt, full_negative_prompt, steps, base_model_name,
refiner_model_name, loras):
self.raw_prompt = raw_prompt
self.full_prompt = full_prompt
self.raw_negative_prompt = raw_negative_prompt
self.full_negative_prompt = full_negative_prompt
self.steps = steps
self.base_model_name = Path(base_model_name).stem
base_model_path = get_file_from_folder_list(base_model_name, modules.config.paths_checkpoints)
self.base_model_hash = get_sha256(base_model_path)
if refiner_model_name not in ['', 'None']:
self.refiner_model_name = Path(refiner_model_name).stem
refiner_model_path = get_file_from_folder_list(refiner_model_name, modules.config.paths_checkpoints)
self.refiner_model_hash = get_sha256(refiner_model_path)
self.loras = []
for (lora_name, lora_weight) in loras:
if lora_name != 'None':
lora_path = get_file_from_folder_list(lora_name, modules.config.paths_loras)
lora_hash = get_sha256(lora_path)
self.loras.append((Path(lora_name).stem, lora_weight, lora_hash))
class A1111MetadataParser(MetadataParser):
def get_scheme(self) -> MetadataScheme:
return MetadataScheme.A1111
fooocus_to_a1111 = {
'raw_prompt': 'Raw prompt',
'raw_negative_prompt': 'Raw negative prompt',
'negative_prompt': 'Negative prompt',
'styles': 'Styles',
'performance': 'Performance',
'steps': 'Steps',
'sampler': 'Sampler',
'scheduler': 'Scheduler',
'guidance_scale': 'CFG scale',
'seed': 'Seed',
'resolution': 'Size',
'sharpness': 'Sharpness',
'adm_guidance': 'ADM Guidance',
'refiner_swap_method': 'Refiner Swap Method',
'adaptive_cfg': 'Adaptive CFG',
'overwrite_switch': 'Overwrite Switch',
'freeu': 'FreeU',
'base_model': 'Model',
'base_model_hash': 'Model hash',
'refiner_model': 'Refiner',
'refiner_model_hash': 'Refiner hash',
'lora_hashes': 'Lora hashes',
'lora_weights': 'Lora weights',
'created_by': 'User',
'version': 'Version'
}
def parse_json(self, metadata: str) -> dict:
metadata_prompt = ''
metadata_negative_prompt = ''
done_with_prompt = False
*lines, lastline = metadata.strip().split("\n")
if len(re_param.findall(lastline)) < 3:
lines.append(lastline)
lastline = ''
for line in lines:
line = line.strip()
if line.startswith(f"{self.fooocus_to_a1111['negative_prompt']}:"):
done_with_prompt = True
line = line[len(f"{self.fooocus_to_a1111['negative_prompt']}:"):].strip()
if done_with_prompt:
metadata_negative_prompt += ('' if metadata_negative_prompt == '' else "\n") + line
else:
metadata_prompt += ('' if metadata_prompt == '' else "\n") + line
found_styles, prompt, negative_prompt = extract_styles_from_prompt(metadata_prompt, metadata_negative_prompt)
data = {
'prompt': prompt,
'negative_prompt': negative_prompt
}
for k, v in re_param.findall(lastline):
try:
if v != '' and v[0] == '"' and v[-1] == '"':
v = unquote(v)
m = re_imagesize.match(v)
if m is not None:
data['resolution'] = str((m.group(1), m.group(2)))
else:
data[list(self.fooocus_to_a1111.keys())[list(self.fooocus_to_a1111.values()).index(k)]] = v
except Exception:
print(f"Error parsing \"{k}: {v}\"")
# workaround for multiline prompts
if 'raw_prompt' in data:
data['prompt'] = data['raw_prompt']
raw_prompt = data['raw_prompt'].replace("\n", ', ')
if metadata_prompt != raw_prompt and modules.sdxl_styles.fooocus_expansion not in found_styles:
found_styles.append(modules.sdxl_styles.fooocus_expansion)
if 'raw_negative_prompt' in data:
data['negative_prompt'] = data['raw_negative_prompt']
data['styles'] = str(found_styles)
# try to load performance based on steps, fallback for direct A1111 imports
if 'steps' in data and 'performance' not in data:
try:
data['performance'] = Performance[Steps(int(data['steps'])).name].value
except ValueError | KeyError:
pass
if 'sampler' in data:
data['sampler'] = data['sampler'].replace(' Karras', '')
# get key
for k, v in SAMPLERS.items():
if v == data['sampler']:
data['sampler'] = k
break
for key in ['base_model', 'refiner_model']:
if key in data:
for filename in modules.config.model_filenames:
path = Path(filename)
if data[key] == path.stem:
data[key] = filename
break
if 'lora_hashes' in data:
lora_filenames = modules.config.lora_filenames.copy()
if modules.config.sdxl_lcm_lora in lora_filenames:
lora_filenames.remove(modules.config.sdxl_lcm_lora)
for li, lora in enumerate(data['lora_hashes'].split(', ')):
lora_name, lora_hash, lora_weight = lora.split(': ')
for filename in lora_filenames:
path = Path(filename)
if lora_name == path.stem:
data[f'lora_combined_{li + 1}'] = f'{filename} : {lora_weight}'
break
return data
def parse_string(self, metadata: dict) -> str:
data = {k: v for _, k, v in metadata}
width, height = eval(data['resolution'])
sampler = data['sampler']
scheduler = data['scheduler']
if sampler in SAMPLERS and SAMPLERS[sampler] != '':
sampler = SAMPLERS[sampler]
if sampler not in CIVITAI_NO_KARRAS and scheduler == 'karras':
sampler += f' Karras'
generation_params = {
self.fooocus_to_a1111['steps']: self.steps,
self.fooocus_to_a1111['sampler']: sampler,
self.fooocus_to_a1111['seed']: data['seed'],
self.fooocus_to_a1111['resolution']: f'{width}x{height}',
self.fooocus_to_a1111['guidance_scale']: data['guidance_scale'],
self.fooocus_to_a1111['sharpness']: data['sharpness'],
self.fooocus_to_a1111['adm_guidance']: data['adm_guidance'],
self.fooocus_to_a1111['base_model']: Path(data['base_model']).stem,
self.fooocus_to_a1111['base_model_hash']: self.base_model_hash,
self.fooocus_to_a1111['performance']: data['performance'],
self.fooocus_to_a1111['scheduler']: scheduler,
# workaround for multiline prompts
self.fooocus_to_a1111['raw_prompt']: self.raw_prompt,
self.fooocus_to_a1111['raw_negative_prompt']: self.raw_negative_prompt,
}
if self.refiner_model_name not in ['', 'None']:
generation_params |= {
self.fooocus_to_a1111['refiner_model']: self.refiner_model_name,
self.fooocus_to_a1111['refiner_model_hash']: self.refiner_model_hash
}
for key in ['adaptive_cfg', 'overwrite_switch', 'refiner_swap_method', 'freeu']:
if key in data:
generation_params[self.fooocus_to_a1111[key]] = data[key]
lora_hashes = []
for index, (lora_name, lora_weight, lora_hash) in enumerate(self.loras):
# workaround for Fooocus not knowing LoRA name in LoRA metadata
lora_hashes.append(f'{lora_name}: {lora_hash}: {lora_weight}')
lora_hashes_string = ', '.join(lora_hashes)
generation_params |= {
self.fooocus_to_a1111['lora_hashes']: lora_hashes_string,
self.fooocus_to_a1111['version']: data['version']
}
if modules.config.metadata_created_by != '':
generation_params[self.fooocus_to_a1111['created_by']] = modules.config.metadata_created_by
generation_params_text = ", ".join(
[k if k == v else f'{k}: {quote(v)}' for k, v in generation_params.items() if
v is not None])
positive_prompt_resolved = ', '.join(self.full_prompt)
negative_prompt_resolved = ', '.join(self.full_negative_prompt)
negative_prompt_text = f"\nNegative prompt: {negative_prompt_resolved}" if negative_prompt_resolved else ""
return f"{positive_prompt_resolved}{negative_prompt_text}\n{generation_params_text}".strip()
class FooocusMetadataParser(MetadataParser):
def get_scheme(self) -> MetadataScheme:
return MetadataScheme.FOOOCUS
def parse_json(self, metadata: dict) -> dict:
model_filenames = modules.config.model_filenames.copy()
lora_filenames = modules.config.lora_filenames.copy()
if modules.config.sdxl_lcm_lora in lora_filenames:
lora_filenames.remove(modules.config.sdxl_lcm_lora)
for key, value in metadata.items():
if value in ['', 'None']:
continue
if key in ['base_model', 'refiner_model']:
metadata[key] = self.replace_value_with_filename(key, value, model_filenames)
elif key.startswith('lora_combined_'):
metadata[key] = self.replace_value_with_filename(key, value, lora_filenames)
else:
continue
return metadata
def parse_string(self, metadata: list) -> str:
for li, (label, key, value) in enumerate(metadata):
# remove model folder paths from metadata
if key.startswith('lora_combined_'):
name, weight = value.split(' : ')
name = Path(name).stem
value = f'{name} : {weight}'
metadata[li] = (label, key, value)
res = {k: v for _, k, v in metadata}
res['full_prompt'] = self.full_prompt
res['full_negative_prompt'] = self.full_negative_prompt
res['steps'] = self.steps
res['base_model'] = self.base_model_name
res['base_model_hash'] = self.base_model_hash
if self.refiner_model_name not in ['', 'None']:
res['refiner_model'] = self.refiner_model_name
res['refiner_model_hash'] = self.refiner_model_hash
res['loras'] = self.loras
if modules.config.metadata_created_by != '':
res['created_by'] = modules.config.metadata_created_by
return json.dumps(dict(sorted(res.items())))
@staticmethod
def replace_value_with_filename(key, value, filenames):
for filename in filenames:
path = Path(filename)
if key.startswith('lora_combined_'):
name, weight = value.split(' : ')
if name == path.stem:
return f'{filename} : {weight}'
elif value == path.stem:
return filename
def get_metadata_parser(metadata_scheme: MetadataScheme) -> MetadataParser:
match metadata_scheme:
case MetadataScheme.FOOOCUS:
return FooocusMetadataParser()
case MetadataScheme.A1111:
return A1111MetadataParser()
case _:
raise NotImplementedError
def read_info_from_image(filepath) -> tuple[str | None, MetadataScheme | None]:
with Image.open(filepath) as image:
items = (image.info or {}).copy()
parameters = items.pop('parameters', None)
metadata_scheme = items.pop('fooocus_scheme', None)
exif = items.pop('exif', None)
if parameters is not None and is_json(parameters):
parameters = json.loads(parameters)
elif exif is not None:
exif = image.getexif()
# 0x9286 = UserComment
parameters = exif.get(0x9286, None)
# 0x927C = MakerNote
metadata_scheme = exif.get(0x927C, None)
if is_json(parameters):
parameters = json.loads(parameters)
try:
metadata_scheme = MetadataScheme(metadata_scheme)
except ValueError:
metadata_scheme = None
# broad fallback
if isinstance(parameters, dict):
metadata_scheme = MetadataScheme.FOOOCUS
if isinstance(parameters, str):
metadata_scheme = MetadataScheme.A1111
return parameters, metadata_scheme
def get_exif(metadata: str | None, metadata_scheme: str):
exif = Image.Exif()
# tags see see https://github.com/python-pillow/Pillow/blob/9.2.x/src/PIL/ExifTags.py
# 0x9286 = UserComment
exif[0x9286] = metadata
# 0x0131 = Software
exif[0x0131] = 'Fooocus v' + fooocus_version.version
# 0x927C = MakerNote
exif[0x927C] = metadata_scheme
return exif