|
import json |
|
import os |
|
import re |
|
from abc import ABC, abstractmethod |
|
from pathlib import Path |
|
|
|
import gradio as gr |
|
from PIL import Image |
|
|
|
import fooocus_version |
|
import modules.config |
|
import modules.sdxl_styles |
|
from modules.flags import MetadataScheme, Performance, Steps |
|
from modules.flags import SAMPLERS, CIVITAI_NO_KARRAS |
|
from modules.util import quote, unquote, extract_styles_from_prompt, is_json, get_file_from_folder_list, calculate_sha256 |
|
|
|
re_param_code = r'\s*(\w[\w \-/]+):\s*("(?:\\.|[^\\"])+"|[^,]*)(?:,|$)' |
|
re_param = re.compile(re_param_code) |
|
re_imagesize = re.compile(r"^(\d+)x(\d+)$") |
|
|
|
hash_cache = {} |
|
|
|
|
|
def load_parameter_button_click(raw_metadata: dict | str, is_generating: bool): |
|
loaded_parameter_dict = raw_metadata |
|
if isinstance(raw_metadata, str): |
|
loaded_parameter_dict = json.loads(raw_metadata) |
|
assert isinstance(loaded_parameter_dict, dict) |
|
|
|
results = [len(loaded_parameter_dict) > 0, 1] |
|
|
|
get_str('prompt', 'Prompt', loaded_parameter_dict, results) |
|
get_str('negative_prompt', 'Negative Prompt', loaded_parameter_dict, results) |
|
get_list('styles', 'Styles', loaded_parameter_dict, results) |
|
get_str('performance', 'Performance', loaded_parameter_dict, results) |
|
get_steps('steps', 'Steps', loaded_parameter_dict, results) |
|
get_float('overwrite_switch', 'Overwrite Switch', loaded_parameter_dict, results) |
|
get_resolution('resolution', 'Resolution', loaded_parameter_dict, results) |
|
get_float('guidance_scale', 'Guidance Scale', loaded_parameter_dict, results) |
|
get_float('sharpness', 'Sharpness', loaded_parameter_dict, results) |
|
get_adm_guidance('adm_guidance', 'ADM Guidance', loaded_parameter_dict, results) |
|
get_str('refiner_swap_method', 'Refiner Swap Method', loaded_parameter_dict, results) |
|
get_float('adaptive_cfg', 'CFG Mimicking from TSNR', loaded_parameter_dict, results) |
|
get_str('base_model', 'Base Model', loaded_parameter_dict, results) |
|
get_str('refiner_model', 'Refiner Model', loaded_parameter_dict, results) |
|
get_float('refiner_switch', 'Refiner Switch', loaded_parameter_dict, results) |
|
get_str('sampler', 'Sampler', loaded_parameter_dict, results) |
|
get_str('scheduler', 'Scheduler', loaded_parameter_dict, results) |
|
get_seed('seed', 'Seed', loaded_parameter_dict, results) |
|
|
|
if is_generating: |
|
results.append(gr.update()) |
|
else: |
|
results.append(gr.update(visible=True)) |
|
|
|
results.append(gr.update(visible=False)) |
|
|
|
get_freeu('freeu', 'FreeU', loaded_parameter_dict, results) |
|
|
|
for i in range(modules.config.default_max_lora_number): |
|
get_lora(f'lora_combined_{i + 1}', f'LoRA {i + 1}', loaded_parameter_dict, results) |
|
|
|
return results |
|
|
|
|
|
def get_str(key: str, fallback: str | None, source_dict: dict, results: list, default=None): |
|
try: |
|
h = source_dict.get(key, source_dict.get(fallback, default)) |
|
assert isinstance(h, str) |
|
results.append(h) |
|
except: |
|
results.append(gr.update()) |
|
|
|
|
|
def get_list(key: str, fallback: str | None, source_dict: dict, results: list, default=None): |
|
try: |
|
h = source_dict.get(key, source_dict.get(fallback, default)) |
|
h = eval(h) |
|
assert isinstance(h, list) |
|
results.append(h) |
|
except: |
|
results.append(gr.update()) |
|
|
|
|
|
def get_float(key: str, fallback: str | None, source_dict: dict, results: list, default=None): |
|
try: |
|
h = source_dict.get(key, source_dict.get(fallback, default)) |
|
assert h is not None |
|
h = float(h) |
|
results.append(h) |
|
except: |
|
results.append(gr.update()) |
|
|
|
|
|
def get_steps(key: str, fallback: str | None, source_dict: dict, results: list, default=None): |
|
try: |
|
h = source_dict.get(key, source_dict.get(fallback, default)) |
|
assert h is not None |
|
h = int(h) |
|
|
|
if h not in iter(Steps) or Steps(h).name.casefold() != source_dict.get('performance', '').replace(' ', '_').casefold(): |
|
results.append(h) |
|
return |
|
results.append(-1) |
|
except: |
|
results.append(-1) |
|
|
|
|
|
def get_resolution(key: str, fallback: str | None, source_dict: dict, results: list, default=None): |
|
try: |
|
h = source_dict.get(key, source_dict.get(fallback, default)) |
|
width, height = eval(h) |
|
formatted = modules.config.add_ratio(f'{width}*{height}') |
|
if formatted in modules.config.available_aspect_ratios: |
|
results.append(formatted) |
|
results.append(-1) |
|
results.append(-1) |
|
else: |
|
results.append(gr.update()) |
|
results.append(int(width)) |
|
results.append(int(height)) |
|
except: |
|
results.append(gr.update()) |
|
results.append(gr.update()) |
|
results.append(gr.update()) |
|
|
|
|
|
def get_seed(key: str, fallback: str | None, source_dict: dict, results: list, default=None): |
|
try: |
|
h = source_dict.get(key, source_dict.get(fallback, default)) |
|
assert h is not None |
|
h = int(h) |
|
results.append(False) |
|
results.append(h) |
|
except: |
|
results.append(gr.update()) |
|
results.append(gr.update()) |
|
|
|
|
|
def get_adm_guidance(key: str, fallback: str | None, source_dict: dict, results: list, default=None): |
|
try: |
|
h = source_dict.get(key, source_dict.get(fallback, default)) |
|
p, n, e = eval(h) |
|
results.append(float(p)) |
|
results.append(float(n)) |
|
results.append(float(e)) |
|
except: |
|
results.append(gr.update()) |
|
results.append(gr.update()) |
|
results.append(gr.update()) |
|
|
|
|
|
def get_freeu(key: str, fallback: str | None, source_dict: dict, results: list, default=None): |
|
try: |
|
h = source_dict.get(key, source_dict.get(fallback, default)) |
|
b1, b2, s1, s2 = eval(h) |
|
results.append(True) |
|
results.append(float(b1)) |
|
results.append(float(b2)) |
|
results.append(float(s1)) |
|
results.append(float(s2)) |
|
except: |
|
results.append(False) |
|
results.append(gr.update()) |
|
results.append(gr.update()) |
|
results.append(gr.update()) |
|
results.append(gr.update()) |
|
|
|
|
|
def get_lora(key: str, fallback: str | None, source_dict: dict, results: list): |
|
try: |
|
n, w = source_dict.get(key, source_dict.get(fallback)).split(' : ') |
|
w = float(w) |
|
results.append(True) |
|
results.append(n) |
|
results.append(w) |
|
except: |
|
results.append(True) |
|
results.append('None') |
|
results.append(1) |
|
|
|
|
|
def get_sha256(filepath): |
|
global hash_cache |
|
if filepath not in hash_cache: |
|
hash_cache[filepath] = calculate_sha256(filepath) |
|
|
|
return hash_cache[filepath] |
|
|
|
|
|
def parse_meta_from_preset(preset_content): |
|
assert isinstance(preset_content, dict) |
|
preset_prepared = {} |
|
items = preset_content |
|
|
|
for settings_key, meta_key in modules.config.possible_preset_keys.items(): |
|
if settings_key == "default_loras": |
|
loras = getattr(modules.config, settings_key) |
|
if settings_key in items: |
|
loras = items[settings_key] |
|
for index, lora in enumerate(loras[:5]): |
|
preset_prepared[f'lora_combined_{index + 1}'] = ' : '.join(map(str, lora)) |
|
elif settings_key == "default_aspect_ratio": |
|
if settings_key in items and items[settings_key] is not None: |
|
default_aspect_ratio = items[settings_key] |
|
width, height = default_aspect_ratio.split('*') |
|
else: |
|
default_aspect_ratio = getattr(modules.config, settings_key) |
|
width, height = default_aspect_ratio.split('×') |
|
height = height[:height.index(" ")] |
|
preset_prepared[meta_key] = (width, height) |
|
else: |
|
preset_prepared[meta_key] = items[settings_key] if settings_key in items and items[ |
|
settings_key] is not None else getattr(modules.config, settings_key) |
|
|
|
if settings_key == "default_styles" or settings_key == "default_aspect_ratio": |
|
preset_prepared[meta_key] = str(preset_prepared[meta_key]) |
|
|
|
return preset_prepared |
|
|
|
|
|
class MetadataParser(ABC): |
|
def __init__(self): |
|
self.raw_prompt: str = '' |
|
self.full_prompt: str = '' |
|
self.raw_negative_prompt: str = '' |
|
self.full_negative_prompt: str = '' |
|
self.steps: int = 30 |
|
self.base_model_name: str = '' |
|
self.base_model_hash: str = '' |
|
self.refiner_model_name: str = '' |
|
self.refiner_model_hash: str = '' |
|
self.loras: list = [] |
|
|
|
@abstractmethod |
|
def get_scheme(self) -> MetadataScheme: |
|
raise NotImplementedError |
|
|
|
@abstractmethod |
|
def parse_json(self, metadata: dict | str) -> dict: |
|
raise NotImplementedError |
|
|
|
@abstractmethod |
|
def parse_string(self, metadata: dict) -> str: |
|
raise NotImplementedError |
|
|
|
def set_data(self, raw_prompt, full_prompt, raw_negative_prompt, full_negative_prompt, steps, base_model_name, |
|
refiner_model_name, loras): |
|
self.raw_prompt = raw_prompt |
|
self.full_prompt = full_prompt |
|
self.raw_negative_prompt = raw_negative_prompt |
|
self.full_negative_prompt = full_negative_prompt |
|
self.steps = steps |
|
self.base_model_name = Path(base_model_name).stem |
|
|
|
base_model_path = get_file_from_folder_list(base_model_name, modules.config.paths_checkpoints) |
|
self.base_model_hash = get_sha256(base_model_path) |
|
|
|
if refiner_model_name not in ['', 'None']: |
|
self.refiner_model_name = Path(refiner_model_name).stem |
|
refiner_model_path = get_file_from_folder_list(refiner_model_name, modules.config.paths_checkpoints) |
|
self.refiner_model_hash = get_sha256(refiner_model_path) |
|
|
|
self.loras = [] |
|
for (lora_name, lora_weight) in loras: |
|
if lora_name != 'None': |
|
lora_path = get_file_from_folder_list(lora_name, modules.config.paths_loras) |
|
lora_hash = get_sha256(lora_path) |
|
self.loras.append((Path(lora_name).stem, lora_weight, lora_hash)) |
|
|
|
|
|
class A1111MetadataParser(MetadataParser): |
|
def get_scheme(self) -> MetadataScheme: |
|
return MetadataScheme.A1111 |
|
|
|
fooocus_to_a1111 = { |
|
'raw_prompt': 'Raw prompt', |
|
'raw_negative_prompt': 'Raw negative prompt', |
|
'negative_prompt': 'Negative prompt', |
|
'styles': 'Styles', |
|
'performance': 'Performance', |
|
'steps': 'Steps', |
|
'sampler': 'Sampler', |
|
'scheduler': 'Scheduler', |
|
'guidance_scale': 'CFG scale', |
|
'seed': 'Seed', |
|
'resolution': 'Size', |
|
'sharpness': 'Sharpness', |
|
'adm_guidance': 'ADM Guidance', |
|
'refiner_swap_method': 'Refiner Swap Method', |
|
'adaptive_cfg': 'Adaptive CFG', |
|
'overwrite_switch': 'Overwrite Switch', |
|
'freeu': 'FreeU', |
|
'base_model': 'Model', |
|
'base_model_hash': 'Model hash', |
|
'refiner_model': 'Refiner', |
|
'refiner_model_hash': 'Refiner hash', |
|
'lora_hashes': 'Lora hashes', |
|
'lora_weights': 'Lora weights', |
|
'created_by': 'User', |
|
'version': 'Version' |
|
} |
|
|
|
def parse_json(self, metadata: str) -> dict: |
|
metadata_prompt = '' |
|
metadata_negative_prompt = '' |
|
|
|
done_with_prompt = False |
|
|
|
*lines, lastline = metadata.strip().split("\n") |
|
if len(re_param.findall(lastline)) < 3: |
|
lines.append(lastline) |
|
lastline = '' |
|
|
|
for line in lines: |
|
line = line.strip() |
|
if line.startswith(f"{self.fooocus_to_a1111['negative_prompt']}:"): |
|
done_with_prompt = True |
|
line = line[len(f"{self.fooocus_to_a1111['negative_prompt']}:"):].strip() |
|
if done_with_prompt: |
|
metadata_negative_prompt += ('' if metadata_negative_prompt == '' else "\n") + line |
|
else: |
|
metadata_prompt += ('' if metadata_prompt == '' else "\n") + line |
|
|
|
found_styles, prompt, negative_prompt = extract_styles_from_prompt(metadata_prompt, metadata_negative_prompt) |
|
|
|
data = { |
|
'prompt': prompt, |
|
'negative_prompt': negative_prompt |
|
} |
|
|
|
for k, v in re_param.findall(lastline): |
|
try: |
|
if v != '' and v[0] == '"' and v[-1] == '"': |
|
v = unquote(v) |
|
|
|
m = re_imagesize.match(v) |
|
if m is not None: |
|
data['resolution'] = str((m.group(1), m.group(2))) |
|
else: |
|
data[list(self.fooocus_to_a1111.keys())[list(self.fooocus_to_a1111.values()).index(k)]] = v |
|
except Exception: |
|
print(f"Error parsing \"{k}: {v}\"") |
|
|
|
|
|
if 'raw_prompt' in data: |
|
data['prompt'] = data['raw_prompt'] |
|
raw_prompt = data['raw_prompt'].replace("\n", ', ') |
|
if metadata_prompt != raw_prompt and modules.sdxl_styles.fooocus_expansion not in found_styles: |
|
found_styles.append(modules.sdxl_styles.fooocus_expansion) |
|
|
|
if 'raw_negative_prompt' in data: |
|
data['negative_prompt'] = data['raw_negative_prompt'] |
|
|
|
data['styles'] = str(found_styles) |
|
|
|
|
|
if 'steps' in data and 'performance' not in data: |
|
try: |
|
data['performance'] = Performance[Steps(int(data['steps'])).name].value |
|
except ValueError | KeyError: |
|
pass |
|
|
|
if 'sampler' in data: |
|
data['sampler'] = data['sampler'].replace(' Karras', '') |
|
|
|
for k, v in SAMPLERS.items(): |
|
if v == data['sampler']: |
|
data['sampler'] = k |
|
break |
|
|
|
for key in ['base_model', 'refiner_model']: |
|
if key in data: |
|
for filename in modules.config.model_filenames: |
|
path = Path(filename) |
|
if data[key] == path.stem: |
|
data[key] = filename |
|
break |
|
|
|
if 'lora_hashes' in data: |
|
lora_filenames = modules.config.lora_filenames.copy() |
|
if modules.config.sdxl_lcm_lora in lora_filenames: |
|
lora_filenames.remove(modules.config.sdxl_lcm_lora) |
|
for li, lora in enumerate(data['lora_hashes'].split(', ')): |
|
lora_name, lora_hash, lora_weight = lora.split(': ') |
|
for filename in lora_filenames: |
|
path = Path(filename) |
|
if lora_name == path.stem: |
|
data[f'lora_combined_{li + 1}'] = f'{filename} : {lora_weight}' |
|
break |
|
|
|
return data |
|
|
|
def parse_string(self, metadata: dict) -> str: |
|
data = {k: v for _, k, v in metadata} |
|
|
|
width, height = eval(data['resolution']) |
|
|
|
sampler = data['sampler'] |
|
scheduler = data['scheduler'] |
|
if sampler in SAMPLERS and SAMPLERS[sampler] != '': |
|
sampler = SAMPLERS[sampler] |
|
if sampler not in CIVITAI_NO_KARRAS and scheduler == 'karras': |
|
sampler += f' Karras' |
|
|
|
generation_params = { |
|
self.fooocus_to_a1111['steps']: self.steps, |
|
self.fooocus_to_a1111['sampler']: sampler, |
|
self.fooocus_to_a1111['seed']: data['seed'], |
|
self.fooocus_to_a1111['resolution']: f'{width}x{height}', |
|
self.fooocus_to_a1111['guidance_scale']: data['guidance_scale'], |
|
self.fooocus_to_a1111['sharpness']: data['sharpness'], |
|
self.fooocus_to_a1111['adm_guidance']: data['adm_guidance'], |
|
self.fooocus_to_a1111['base_model']: Path(data['base_model']).stem, |
|
self.fooocus_to_a1111['base_model_hash']: self.base_model_hash, |
|
|
|
self.fooocus_to_a1111['performance']: data['performance'], |
|
self.fooocus_to_a1111['scheduler']: scheduler, |
|
|
|
self.fooocus_to_a1111['raw_prompt']: self.raw_prompt, |
|
self.fooocus_to_a1111['raw_negative_prompt']: self.raw_negative_prompt, |
|
} |
|
|
|
if self.refiner_model_name not in ['', 'None']: |
|
generation_params |= { |
|
self.fooocus_to_a1111['refiner_model']: self.refiner_model_name, |
|
self.fooocus_to_a1111['refiner_model_hash']: self.refiner_model_hash |
|
} |
|
|
|
for key in ['adaptive_cfg', 'overwrite_switch', 'refiner_swap_method', 'freeu']: |
|
if key in data: |
|
generation_params[self.fooocus_to_a1111[key]] = data[key] |
|
|
|
lora_hashes = [] |
|
for index, (lora_name, lora_weight, lora_hash) in enumerate(self.loras): |
|
|
|
lora_hashes.append(f'{lora_name}: {lora_hash}: {lora_weight}') |
|
lora_hashes_string = ', '.join(lora_hashes) |
|
|
|
generation_params |= { |
|
self.fooocus_to_a1111['lora_hashes']: lora_hashes_string, |
|
self.fooocus_to_a1111['version']: data['version'] |
|
} |
|
|
|
if modules.config.metadata_created_by != '': |
|
generation_params[self.fooocus_to_a1111['created_by']] = modules.config.metadata_created_by |
|
|
|
generation_params_text = ", ".join( |
|
[k if k == v else f'{k}: {quote(v)}' for k, v in generation_params.items() if |
|
v is not None]) |
|
positive_prompt_resolved = ', '.join(self.full_prompt) |
|
negative_prompt_resolved = ', '.join(self.full_negative_prompt) |
|
negative_prompt_text = f"\nNegative prompt: {negative_prompt_resolved}" if negative_prompt_resolved else "" |
|
return f"{positive_prompt_resolved}{negative_prompt_text}\n{generation_params_text}".strip() |
|
|
|
|
|
class FooocusMetadataParser(MetadataParser): |
|
def get_scheme(self) -> MetadataScheme: |
|
return MetadataScheme.FOOOCUS |
|
|
|
def parse_json(self, metadata: dict) -> dict: |
|
model_filenames = modules.config.model_filenames.copy() |
|
lora_filenames = modules.config.lora_filenames.copy() |
|
if modules.config.sdxl_lcm_lora in lora_filenames: |
|
lora_filenames.remove(modules.config.sdxl_lcm_lora) |
|
|
|
for key, value in metadata.items(): |
|
if value in ['', 'None']: |
|
continue |
|
if key in ['base_model', 'refiner_model']: |
|
metadata[key] = self.replace_value_with_filename(key, value, model_filenames) |
|
elif key.startswith('lora_combined_'): |
|
metadata[key] = self.replace_value_with_filename(key, value, lora_filenames) |
|
else: |
|
continue |
|
|
|
return metadata |
|
|
|
def parse_string(self, metadata: list) -> str: |
|
for li, (label, key, value) in enumerate(metadata): |
|
|
|
if key.startswith('lora_combined_'): |
|
name, weight = value.split(' : ') |
|
name = Path(name).stem |
|
value = f'{name} : {weight}' |
|
metadata[li] = (label, key, value) |
|
|
|
res = {k: v for _, k, v in metadata} |
|
|
|
res['full_prompt'] = self.full_prompt |
|
res['full_negative_prompt'] = self.full_negative_prompt |
|
res['steps'] = self.steps |
|
res['base_model'] = self.base_model_name |
|
res['base_model_hash'] = self.base_model_hash |
|
|
|
if self.refiner_model_name not in ['', 'None']: |
|
res['refiner_model'] = self.refiner_model_name |
|
res['refiner_model_hash'] = self.refiner_model_hash |
|
|
|
res['loras'] = self.loras |
|
|
|
if modules.config.metadata_created_by != '': |
|
res['created_by'] = modules.config.metadata_created_by |
|
|
|
return json.dumps(dict(sorted(res.items()))) |
|
|
|
@staticmethod |
|
def replace_value_with_filename(key, value, filenames): |
|
for filename in filenames: |
|
path = Path(filename) |
|
if key.startswith('lora_combined_'): |
|
name, weight = value.split(' : ') |
|
if name == path.stem: |
|
return f'{filename} : {weight}' |
|
elif value == path.stem: |
|
return filename |
|
|
|
|
|
def get_metadata_parser(metadata_scheme: MetadataScheme) -> MetadataParser: |
|
match metadata_scheme: |
|
case MetadataScheme.FOOOCUS: |
|
return FooocusMetadataParser() |
|
case MetadataScheme.A1111: |
|
return A1111MetadataParser() |
|
case _: |
|
raise NotImplementedError |
|
|
|
|
|
def read_info_from_image(filepath) -> tuple[str | None, MetadataScheme | None]: |
|
with Image.open(filepath) as image: |
|
items = (image.info or {}).copy() |
|
|
|
parameters = items.pop('parameters', None) |
|
metadata_scheme = items.pop('fooocus_scheme', None) |
|
exif = items.pop('exif', None) |
|
|
|
if parameters is not None and is_json(parameters): |
|
parameters = json.loads(parameters) |
|
elif exif is not None: |
|
exif = image.getexif() |
|
|
|
parameters = exif.get(0x9286, None) |
|
|
|
metadata_scheme = exif.get(0x927C, None) |
|
|
|
if is_json(parameters): |
|
parameters = json.loads(parameters) |
|
|
|
try: |
|
metadata_scheme = MetadataScheme(metadata_scheme) |
|
except ValueError: |
|
metadata_scheme = None |
|
|
|
|
|
if isinstance(parameters, dict): |
|
metadata_scheme = MetadataScheme.FOOOCUS |
|
|
|
if isinstance(parameters, str): |
|
metadata_scheme = MetadataScheme.A1111 |
|
|
|
return parameters, metadata_scheme |
|
|
|
|
|
def get_exif(metadata: str | None, metadata_scheme: str): |
|
exif = Image.Exif() |
|
|
|
|
|
exif[0x9286] = metadata |
|
|
|
exif[0x0131] = 'Fooocus v' + fooocus_version.version |
|
|
|
exif[0x927C] = metadata_scheme |
|
return exif |