|
import threading |
|
from modules.patch import PatchSettings, patch_settings, patch_all |
|
|
|
patch_all() |
|
|
|
class AsyncTask: |
|
def __init__(self, args): |
|
self.args = args |
|
self.yields = [] |
|
self.results = [] |
|
self.last_stop = False |
|
self.processing = False |
|
|
|
|
|
async_tasks = [] |
|
|
|
|
|
def worker(): |
|
global async_tasks |
|
|
|
import os |
|
import traceback |
|
import math |
|
import numpy as np |
|
import cv2 |
|
import torch |
|
import time |
|
import shared |
|
import random |
|
import copy |
|
import modules.default_pipeline as pipeline |
|
import modules.core as core |
|
import modules.flags as flags |
|
import modules.config |
|
import modules.patch |
|
import ldm_patched.modules.model_management |
|
import extras.preprocessors as preprocessors |
|
import modules.inpaint_worker as inpaint_worker |
|
import modules.constants as constants |
|
import extras.ip_adapter as ip_adapter |
|
import extras.face_crop |
|
import fooocus_version |
|
import args_manager |
|
|
|
from modules.sdxl_styles import apply_style, apply_wildcards, fooocus_expansion, apply_arrays |
|
from modules.private_logger import log |
|
from extras.expansion import safe_str |
|
from modules.util import remove_empty_str, HWC3, resize_image, \ |
|
get_image_shape_ceil, set_image_shape_ceil, get_shape_ceil, resample_image, erode_or_dilate, ordinal_suffix |
|
from modules.upscaler import perform_upscale |
|
from modules.flags import Performance |
|
from modules.meta_parser import get_metadata_parser, MetadataScheme |
|
|
|
pid = os.getpid() |
|
print(f'Started worker with PID {pid}') |
|
|
|
try: |
|
async_gradio_app = shared.gradio_root |
|
flag = f'''App started successful. Use the app with {str(async_gradio_app.local_url)} or {str(async_gradio_app.server_name)}:{str(async_gradio_app.server_port)}''' |
|
if async_gradio_app.share: |
|
flag += f''' or {async_gradio_app.share_url}''' |
|
print(flag) |
|
except Exception as e: |
|
print(e) |
|
|
|
def progressbar(async_task, number, text): |
|
print(f'[Fooocus] {text}') |
|
async_task.yields.append(['preview', (number, text, None)]) |
|
|
|
def yield_result(async_task, imgs, do_not_show_finished_images=False): |
|
if not isinstance(imgs, list): |
|
imgs = [imgs] |
|
|
|
async_task.results = async_task.results + imgs |
|
|
|
if do_not_show_finished_images: |
|
return |
|
|
|
async_task.yields.append(['results', async_task.results]) |
|
return |
|
|
|
def build_image_wall(async_task): |
|
results = [] |
|
|
|
if len(async_task.results) < 2: |
|
return |
|
|
|
for img in async_task.results: |
|
if isinstance(img, str) and os.path.exists(img): |
|
img = cv2.imread(img) |
|
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) |
|
if not isinstance(img, np.ndarray): |
|
return |
|
if img.ndim != 3: |
|
return |
|
results.append(img) |
|
|
|
H, W, C = results[0].shape |
|
|
|
for img in results: |
|
Hn, Wn, Cn = img.shape |
|
if H != Hn: |
|
return |
|
if W != Wn: |
|
return |
|
if C != Cn: |
|
return |
|
|
|
cols = float(len(results)) ** 0.5 |
|
cols = int(math.ceil(cols)) |
|
rows = float(len(results)) / float(cols) |
|
rows = int(math.ceil(rows)) |
|
|
|
wall = np.zeros(shape=(H * rows, W * cols, C), dtype=np.uint8) |
|
|
|
for y in range(rows): |
|
for x in range(cols): |
|
if y * cols + x < len(results): |
|
img = results[y * cols + x] |
|
wall[y * H:y * H + H, x * W:x * W + W, :] = img |
|
|
|
|
|
async_task.results = async_task.results + [wall] |
|
return |
|
|
|
def apply_enabled_loras(loras): |
|
enabled_loras = [] |
|
for lora_enabled, lora_model, lora_weight in loras: |
|
if lora_enabled: |
|
enabled_loras.append([lora_model, lora_weight]) |
|
|
|
return enabled_loras |
|
|
|
@torch.no_grad() |
|
@torch.inference_mode() |
|
def handler(async_task): |
|
execution_start_time = time.perf_counter() |
|
async_task.processing = True |
|
|
|
args = async_task.args |
|
args.reverse() |
|
|
|
prompt = args.pop() |
|
negative_prompt = args.pop() |
|
style_selections = args.pop() |
|
performance_selection = Performance(args.pop()) |
|
aspect_ratios_selection = args.pop() |
|
image_number = args.pop() |
|
output_format = args.pop() |
|
image_seed = args.pop() |
|
sharpness = args.pop() |
|
guidance_scale = args.pop() |
|
base_model_name = args.pop() |
|
refiner_model_name = args.pop() |
|
refiner_switch = args.pop() |
|
loras = apply_enabled_loras([[bool(args.pop()), str(args.pop()), float(args.pop()), ] for _ in range(modules.config.default_max_lora_number)]) |
|
input_image_checkbox = args.pop() |
|
current_tab = args.pop() |
|
uov_method = args.pop() |
|
uov_input_image = args.pop() |
|
outpaint_selections = args.pop() |
|
inpaint_input_image = args.pop() |
|
inpaint_additional_prompt = args.pop() |
|
inpaint_mask_image_upload = args.pop() |
|
|
|
disable_preview = args.pop() |
|
disable_intermediate_results = args.pop() |
|
disable_seed_increment = args.pop() |
|
adm_scaler_positive = args.pop() |
|
adm_scaler_negative = args.pop() |
|
adm_scaler_end = args.pop() |
|
adaptive_cfg = args.pop() |
|
sampler_name = args.pop() |
|
scheduler_name = args.pop() |
|
overwrite_step = args.pop() |
|
overwrite_switch = args.pop() |
|
overwrite_width = args.pop() |
|
overwrite_height = args.pop() |
|
overwrite_vary_strength = args.pop() |
|
overwrite_upscale_strength = args.pop() |
|
mixing_image_prompt_and_vary_upscale = args.pop() |
|
mixing_image_prompt_and_inpaint = args.pop() |
|
debugging_cn_preprocessor = args.pop() |
|
skipping_cn_preprocessor = args.pop() |
|
canny_low_threshold = args.pop() |
|
canny_high_threshold = args.pop() |
|
refiner_swap_method = args.pop() |
|
controlnet_softness = args.pop() |
|
freeu_enabled = args.pop() |
|
freeu_b1 = args.pop() |
|
freeu_b2 = args.pop() |
|
freeu_s1 = args.pop() |
|
freeu_s2 = args.pop() |
|
debugging_inpaint_preprocessor = args.pop() |
|
inpaint_disable_initial_latent = args.pop() |
|
inpaint_engine = args.pop() |
|
inpaint_strength = args.pop() |
|
inpaint_respective_field = args.pop() |
|
inpaint_mask_upload_checkbox = args.pop() |
|
invert_mask_checkbox = args.pop() |
|
inpaint_erode_or_dilate = args.pop() |
|
|
|
save_metadata_to_images = args.pop() if not args_manager.args.disable_metadata else False |
|
metadata_scheme = MetadataScheme(args.pop()) if not args_manager.args.disable_metadata else MetadataScheme.FOOOCUS |
|
|
|
cn_tasks = {x: [] for x in flags.ip_list} |
|
for _ in range(flags.controlnet_image_count): |
|
cn_img = args.pop() |
|
cn_stop = args.pop() |
|
cn_weight = args.pop() |
|
cn_type = args.pop() |
|
if cn_img is not None: |
|
cn_tasks[cn_type].append([cn_img, cn_stop, cn_weight]) |
|
|
|
outpaint_selections = [o.lower() for o in outpaint_selections] |
|
base_model_additional_loras = [] |
|
raw_style_selections = copy.deepcopy(style_selections) |
|
uov_method = uov_method.lower() |
|
|
|
if fooocus_expansion in style_selections: |
|
use_expansion = True |
|
style_selections.remove(fooocus_expansion) |
|
else: |
|
use_expansion = False |
|
|
|
use_style = len(style_selections) > 0 |
|
|
|
if base_model_name == refiner_model_name: |
|
print(f'Refiner disabled because base model and refiner are same.') |
|
refiner_model_name = 'None' |
|
|
|
steps = performance_selection.steps() |
|
|
|
if performance_selection == Performance.EXTREME_SPEED: |
|
print('Enter LCM mode.') |
|
progressbar(async_task, 1, 'Downloading LCM components ...') |
|
loras += [(modules.config.downloading_sdxl_lcm_lora(), 1.0)] |
|
|
|
if refiner_model_name != 'None': |
|
print(f'Refiner disabled in LCM mode.') |
|
|
|
refiner_model_name = 'None' |
|
sampler_name = 'lcm' |
|
scheduler_name = 'lcm' |
|
sharpness = 0.0 |
|
guidance_scale = 1.0 |
|
adaptive_cfg = 1.0 |
|
refiner_switch = 1.0 |
|
adm_scaler_positive = 1.0 |
|
adm_scaler_negative = 1.0 |
|
adm_scaler_end = 0.0 |
|
|
|
print(f'[Parameters] Adaptive CFG = {adaptive_cfg}') |
|
print(f'[Parameters] Sharpness = {sharpness}') |
|
print(f'[Parameters] ControlNet Softness = {controlnet_softness}') |
|
print(f'[Parameters] ADM Scale = ' |
|
f'{adm_scaler_positive} : ' |
|
f'{adm_scaler_negative} : ' |
|
f'{adm_scaler_end}') |
|
|
|
patch_settings[pid] = PatchSettings( |
|
sharpness, |
|
adm_scaler_end, |
|
adm_scaler_positive, |
|
adm_scaler_negative, |
|
controlnet_softness, |
|
adaptive_cfg |
|
) |
|
|
|
cfg_scale = float(guidance_scale) |
|
print(f'[Parameters] CFG = {cfg_scale}') |
|
|
|
initial_latent = None |
|
denoising_strength = 1.0 |
|
tiled = False |
|
|
|
width, height = aspect_ratios_selection.replace('×', ' ').split(' ')[:2] |
|
width, height = int(width), int(height) |
|
|
|
skip_prompt_processing = False |
|
|
|
inpaint_worker.current_task = None |
|
inpaint_parameterized = inpaint_engine != 'None' |
|
inpaint_image = None |
|
inpaint_mask = None |
|
inpaint_head_model_path = None |
|
|
|
use_synthetic_refiner = False |
|
|
|
controlnet_canny_path = None |
|
controlnet_cpds_path = None |
|
clip_vision_path, ip_negative_path, ip_adapter_path, ip_adapter_face_path = None, None, None, None |
|
|
|
seed = int(image_seed) |
|
print(f'[Parameters] Seed = {seed}') |
|
|
|
goals = [] |
|
tasks = [] |
|
|
|
if input_image_checkbox: |
|
if (current_tab == 'uov' or ( |
|
current_tab == 'ip' and mixing_image_prompt_and_vary_upscale)) \ |
|
and uov_method != flags.disabled and uov_input_image is not None: |
|
uov_input_image = HWC3(uov_input_image) |
|
if 'vary' in uov_method: |
|
goals.append('vary') |
|
elif 'upscale' in uov_method: |
|
goals.append('upscale') |
|
if 'fast' in uov_method: |
|
skip_prompt_processing = True |
|
else: |
|
steps = performance_selection.steps_uov() |
|
|
|
progressbar(async_task, 1, 'Downloading upscale models ...') |
|
modules.config.downloading_upscale_model() |
|
if (current_tab == 'inpaint' or ( |
|
current_tab == 'ip' and mixing_image_prompt_and_inpaint)) \ |
|
and isinstance(inpaint_input_image, dict): |
|
inpaint_image = inpaint_input_image['image'] |
|
inpaint_mask = inpaint_input_image['mask'][:, :, 0] |
|
|
|
if inpaint_mask_upload_checkbox: |
|
if isinstance(inpaint_mask_image_upload, np.ndarray): |
|
if inpaint_mask_image_upload.ndim == 3: |
|
H, W, C = inpaint_image.shape |
|
inpaint_mask_image_upload = resample_image(inpaint_mask_image_upload, width=W, height=H) |
|
inpaint_mask_image_upload = np.mean(inpaint_mask_image_upload, axis=2) |
|
inpaint_mask_image_upload = (inpaint_mask_image_upload > 127).astype(np.uint8) * 255 |
|
inpaint_mask = np.maximum(inpaint_mask, inpaint_mask_image_upload) |
|
|
|
if int(inpaint_erode_or_dilate) != 0: |
|
inpaint_mask = erode_or_dilate(inpaint_mask, inpaint_erode_or_dilate) |
|
|
|
if invert_mask_checkbox: |
|
inpaint_mask = 255 - inpaint_mask |
|
|
|
inpaint_image = HWC3(inpaint_image) |
|
if isinstance(inpaint_image, np.ndarray) and isinstance(inpaint_mask, np.ndarray) \ |
|
and (np.any(inpaint_mask > 127) or len(outpaint_selections) > 0): |
|
progressbar(async_task, 1, 'Downloading upscale models ...') |
|
modules.config.downloading_upscale_model() |
|
if inpaint_parameterized: |
|
progressbar(async_task, 1, 'Downloading inpainter ...') |
|
inpaint_head_model_path, inpaint_patch_model_path = modules.config.downloading_inpaint_models( |
|
inpaint_engine) |
|
base_model_additional_loras += [(inpaint_patch_model_path, 1.0)] |
|
print(f'[Inpaint] Current inpaint model is {inpaint_patch_model_path}') |
|
if refiner_model_name == 'None': |
|
use_synthetic_refiner = True |
|
refiner_switch = 0.5 |
|
else: |
|
inpaint_head_model_path, inpaint_patch_model_path = None, None |
|
print(f'[Inpaint] Parameterized inpaint is disabled.') |
|
if inpaint_additional_prompt != '': |
|
if prompt == '': |
|
prompt = inpaint_additional_prompt |
|
else: |
|
prompt = inpaint_additional_prompt + '\n' + prompt |
|
goals.append('inpaint') |
|
if current_tab == 'ip' or \ |
|
mixing_image_prompt_and_vary_upscale or \ |
|
mixing_image_prompt_and_inpaint: |
|
goals.append('cn') |
|
progressbar(async_task, 1, 'Downloading control models ...') |
|
if len(cn_tasks[flags.cn_canny]) > 0: |
|
controlnet_canny_path = modules.config.downloading_controlnet_canny() |
|
if len(cn_tasks[flags.cn_cpds]) > 0: |
|
controlnet_cpds_path = modules.config.downloading_controlnet_cpds() |
|
if len(cn_tasks[flags.cn_ip]) > 0: |
|
clip_vision_path, ip_negative_path, ip_adapter_path = modules.config.downloading_ip_adapters('ip') |
|
if len(cn_tasks[flags.cn_ip_face]) > 0: |
|
clip_vision_path, ip_negative_path, ip_adapter_face_path = modules.config.downloading_ip_adapters( |
|
'face') |
|
progressbar(async_task, 1, 'Loading control models ...') |
|
|
|
|
|
pipeline.refresh_controlnets([controlnet_canny_path, controlnet_cpds_path]) |
|
ip_adapter.load_ip_adapter(clip_vision_path, ip_negative_path, ip_adapter_path) |
|
ip_adapter.load_ip_adapter(clip_vision_path, ip_negative_path, ip_adapter_face_path) |
|
|
|
if overwrite_step > 0: |
|
steps = overwrite_step |
|
|
|
switch = int(round(steps * refiner_switch)) |
|
|
|
if overwrite_switch > 0: |
|
switch = overwrite_switch |
|
|
|
if overwrite_width > 0: |
|
width = overwrite_width |
|
|
|
if overwrite_height > 0: |
|
height = overwrite_height |
|
|
|
print(f'[Parameters] Sampler = {sampler_name} - {scheduler_name}') |
|
print(f'[Parameters] Steps = {steps} - {switch}') |
|
|
|
progressbar(async_task, 1, 'Initializing ...') |
|
|
|
if not skip_prompt_processing: |
|
|
|
prompts = remove_empty_str([safe_str(p) for p in prompt.splitlines()], default='') |
|
negative_prompts = remove_empty_str([safe_str(p) for p in negative_prompt.splitlines()], default='') |
|
|
|
prompt = prompts[0] |
|
negative_prompt = negative_prompts[0] |
|
|
|
if prompt == '': |
|
|
|
use_expansion = False |
|
|
|
extra_positive_prompts = prompts[1:] if len(prompts) > 1 else [] |
|
extra_negative_prompts = negative_prompts[1:] if len(negative_prompts) > 1 else [] |
|
|
|
progressbar(async_task, 3, 'Loading models ...') |
|
pipeline.refresh_everything(refiner_model_name=refiner_model_name, base_model_name=base_model_name, |
|
loras=loras, base_model_additional_loras=base_model_additional_loras, |
|
use_synthetic_refiner=use_synthetic_refiner) |
|
|
|
progressbar(async_task, 3, 'Processing prompts ...') |
|
tasks = [] |
|
|
|
for i in range(image_number): |
|
if disable_seed_increment: |
|
task_seed = seed |
|
else: |
|
task_seed = (seed + i) % (constants.MAX_SEED + 1) |
|
|
|
task_rng = random.Random(task_seed) |
|
task_prompt = apply_wildcards(prompt, task_rng) |
|
task_prompt = apply_arrays(task_prompt, i) |
|
task_negative_prompt = apply_wildcards(negative_prompt, task_rng) |
|
task_extra_positive_prompts = [apply_wildcards(pmt, task_rng) for pmt in extra_positive_prompts] |
|
task_extra_negative_prompts = [apply_wildcards(pmt, task_rng) for pmt in extra_negative_prompts] |
|
|
|
positive_basic_workloads = [] |
|
negative_basic_workloads = [] |
|
|
|
if use_style: |
|
for s in style_selections: |
|
p, n = apply_style(s, positive=task_prompt) |
|
positive_basic_workloads = positive_basic_workloads + p |
|
negative_basic_workloads = negative_basic_workloads + n |
|
else: |
|
positive_basic_workloads.append(task_prompt) |
|
|
|
negative_basic_workloads.append(task_negative_prompt) |
|
|
|
positive_basic_workloads = positive_basic_workloads + task_extra_positive_prompts |
|
negative_basic_workloads = negative_basic_workloads + task_extra_negative_prompts |
|
|
|
positive_basic_workloads = remove_empty_str(positive_basic_workloads, default=task_prompt) |
|
negative_basic_workloads = remove_empty_str(negative_basic_workloads, default=task_negative_prompt) |
|
|
|
tasks.append(dict( |
|
task_seed=task_seed, |
|
task_prompt=task_prompt, |
|
task_negative_prompt=task_negative_prompt, |
|
positive=positive_basic_workloads, |
|
negative=negative_basic_workloads, |
|
expansion='', |
|
c=None, |
|
uc=None, |
|
positive_top_k=len(positive_basic_workloads), |
|
negative_top_k=len(negative_basic_workloads), |
|
log_positive_prompt='\n'.join([task_prompt] + task_extra_positive_prompts), |
|
log_negative_prompt='\n'.join([task_negative_prompt] + task_extra_negative_prompts), |
|
)) |
|
|
|
if use_expansion: |
|
for i, t in enumerate(tasks): |
|
progressbar(async_task, 5, f'Preparing Fooocus text #{i + 1} ...') |
|
expansion = pipeline.final_expansion(t['task_prompt'], t['task_seed']) |
|
print(f'[Prompt Expansion] {expansion}') |
|
t['expansion'] = expansion |
|
t['positive'] = copy.deepcopy(t['positive']) + [expansion] |
|
|
|
for i, t in enumerate(tasks): |
|
progressbar(async_task, 7, f'Encoding positive #{i + 1} ...') |
|
t['c'] = pipeline.clip_encode(texts=t['positive'], pool_top_k=t['positive_top_k']) |
|
|
|
for i, t in enumerate(tasks): |
|
if abs(float(cfg_scale) - 1.0) < 1e-4: |
|
t['uc'] = pipeline.clone_cond(t['c']) |
|
else: |
|
progressbar(async_task, 10, f'Encoding negative #{i + 1} ...') |
|
t['uc'] = pipeline.clip_encode(texts=t['negative'], pool_top_k=t['negative_top_k']) |
|
|
|
if len(goals) > 0: |
|
progressbar(async_task, 13, 'Image processing ...') |
|
|
|
if 'vary' in goals: |
|
if 'subtle' in uov_method: |
|
denoising_strength = 0.5 |
|
if 'strong' in uov_method: |
|
denoising_strength = 0.85 |
|
if overwrite_vary_strength > 0: |
|
denoising_strength = overwrite_vary_strength |
|
|
|
shape_ceil = get_image_shape_ceil(uov_input_image) |
|
if shape_ceil < 1024: |
|
print(f'[Vary] Image is resized because it is too small.') |
|
shape_ceil = 1024 |
|
elif shape_ceil > 2048: |
|
print(f'[Vary] Image is resized because it is too big.') |
|
shape_ceil = 2048 |
|
|
|
uov_input_image = set_image_shape_ceil(uov_input_image, shape_ceil) |
|
|
|
initial_pixels = core.numpy_to_pytorch(uov_input_image) |
|
progressbar(async_task, 13, 'VAE encoding ...') |
|
|
|
candidate_vae, _ = pipeline.get_candidate_vae( |
|
steps=steps, |
|
switch=switch, |
|
denoise=denoising_strength, |
|
refiner_swap_method=refiner_swap_method |
|
) |
|
|
|
initial_latent = core.encode_vae(vae=candidate_vae, pixels=initial_pixels) |
|
B, C, H, W = initial_latent['samples'].shape |
|
width = W * 8 |
|
height = H * 8 |
|
print(f'Final resolution is {str((height, width))}.') |
|
|
|
if 'upscale' in goals: |
|
H, W, C = uov_input_image.shape |
|
progressbar(async_task, 13, f'Upscaling image from {str((H, W))} ...') |
|
uov_input_image = perform_upscale(uov_input_image) |
|
print(f'Image upscaled.') |
|
|
|
if '1.5x' in uov_method: |
|
f = 1.5 |
|
elif '2x' in uov_method: |
|
f = 2.0 |
|
else: |
|
f = 1.0 |
|
|
|
shape_ceil = get_shape_ceil(H * f, W * f) |
|
|
|
if shape_ceil < 1024: |
|
print(f'[Upscale] Image is resized because it is too small.') |
|
uov_input_image = set_image_shape_ceil(uov_input_image, 1024) |
|
shape_ceil = 1024 |
|
else: |
|
uov_input_image = resample_image(uov_input_image, width=W * f, height=H * f) |
|
|
|
image_is_super_large = shape_ceil > 2800 |
|
|
|
if 'fast' in uov_method: |
|
direct_return = True |
|
elif image_is_super_large: |
|
print('Image is too large. Directly returned the SR image. ' |
|
'Usually directly return SR image at 4K resolution ' |
|
'yields better results than SDXL diffusion.') |
|
direct_return = True |
|
else: |
|
direct_return = False |
|
|
|
if direct_return: |
|
d = [('Upscale (Fast)', 'upscale_fast', '2x')] |
|
uov_input_image_path = log(uov_input_image, d, output_format=output_format) |
|
yield_result(async_task, uov_input_image_path, do_not_show_finished_images=True) |
|
return |
|
|
|
tiled = True |
|
denoising_strength = 0.382 |
|
|
|
if overwrite_upscale_strength > 0: |
|
denoising_strength = overwrite_upscale_strength |
|
|
|
initial_pixels = core.numpy_to_pytorch(uov_input_image) |
|
progressbar(async_task, 13, 'VAE encoding ...') |
|
|
|
candidate_vae, _ = pipeline.get_candidate_vae( |
|
steps=steps, |
|
switch=switch, |
|
denoise=denoising_strength, |
|
refiner_swap_method=refiner_swap_method |
|
) |
|
|
|
initial_latent = core.encode_vae( |
|
vae=candidate_vae, |
|
pixels=initial_pixels, tiled=True) |
|
B, C, H, W = initial_latent['samples'].shape |
|
width = W * 8 |
|
height = H * 8 |
|
print(f'Final resolution is {str((height, width))}.') |
|
|
|
if 'inpaint' in goals: |
|
if len(outpaint_selections) > 0: |
|
H, W, C = inpaint_image.shape |
|
if 'top' in outpaint_selections: |
|
inpaint_image = np.pad(inpaint_image, [[int(H * 0.3), 0], [0, 0], [0, 0]], mode='edge') |
|
inpaint_mask = np.pad(inpaint_mask, [[int(H * 0.3), 0], [0, 0]], mode='constant', |
|
constant_values=255) |
|
if 'bottom' in outpaint_selections: |
|
inpaint_image = np.pad(inpaint_image, [[0, int(H * 0.3)], [0, 0], [0, 0]], mode='edge') |
|
inpaint_mask = np.pad(inpaint_mask, [[0, int(H * 0.3)], [0, 0]], mode='constant', |
|
constant_values=255) |
|
|
|
H, W, C = inpaint_image.shape |
|
if 'left' in outpaint_selections: |
|
inpaint_image = np.pad(inpaint_image, [[0, 0], [int(H * 0.3), 0], [0, 0]], mode='edge') |
|
inpaint_mask = np.pad(inpaint_mask, [[0, 0], [int(H * 0.3), 0]], mode='constant', |
|
constant_values=255) |
|
if 'right' in outpaint_selections: |
|
inpaint_image = np.pad(inpaint_image, [[0, 0], [0, int(H * 0.3)], [0, 0]], mode='edge') |
|
inpaint_mask = np.pad(inpaint_mask, [[0, 0], [0, int(H * 0.3)]], mode='constant', |
|
constant_values=255) |
|
|
|
inpaint_image = np.ascontiguousarray(inpaint_image.copy()) |
|
inpaint_mask = np.ascontiguousarray(inpaint_mask.copy()) |
|
inpaint_strength = 1.0 |
|
inpaint_respective_field = 1.0 |
|
|
|
denoising_strength = inpaint_strength |
|
|
|
inpaint_worker.current_task = inpaint_worker.InpaintWorker( |
|
image=inpaint_image, |
|
mask=inpaint_mask, |
|
use_fill=denoising_strength > 0.99, |
|
k=inpaint_respective_field |
|
) |
|
|
|
if debugging_inpaint_preprocessor: |
|
yield_result(async_task, inpaint_worker.current_task.visualize_mask_processing(), |
|
do_not_show_finished_images=True) |
|
return |
|
|
|
progressbar(async_task, 13, 'VAE Inpaint encoding ...') |
|
|
|
inpaint_pixel_fill = core.numpy_to_pytorch(inpaint_worker.current_task.interested_fill) |
|
inpaint_pixel_image = core.numpy_to_pytorch(inpaint_worker.current_task.interested_image) |
|
inpaint_pixel_mask = core.numpy_to_pytorch(inpaint_worker.current_task.interested_mask) |
|
|
|
candidate_vae, candidate_vae_swap = pipeline.get_candidate_vae( |
|
steps=steps, |
|
switch=switch, |
|
denoise=denoising_strength, |
|
refiner_swap_method=refiner_swap_method |
|
) |
|
|
|
latent_inpaint, latent_mask = core.encode_vae_inpaint( |
|
mask=inpaint_pixel_mask, |
|
vae=candidate_vae, |
|
pixels=inpaint_pixel_image) |
|
|
|
latent_swap = None |
|
if candidate_vae_swap is not None: |
|
progressbar(async_task, 13, 'VAE SD15 encoding ...') |
|
latent_swap = core.encode_vae( |
|
vae=candidate_vae_swap, |
|
pixels=inpaint_pixel_fill)['samples'] |
|
|
|
progressbar(async_task, 13, 'VAE encoding ...') |
|
latent_fill = core.encode_vae( |
|
vae=candidate_vae, |
|
pixels=inpaint_pixel_fill)['samples'] |
|
|
|
inpaint_worker.current_task.load_latent( |
|
latent_fill=latent_fill, latent_mask=latent_mask, latent_swap=latent_swap) |
|
|
|
if inpaint_parameterized: |
|
pipeline.final_unet = inpaint_worker.current_task.patch( |
|
inpaint_head_model_path=inpaint_head_model_path, |
|
inpaint_latent=latent_inpaint, |
|
inpaint_latent_mask=latent_mask, |
|
model=pipeline.final_unet |
|
) |
|
|
|
if not inpaint_disable_initial_latent: |
|
initial_latent = {'samples': latent_fill} |
|
|
|
B, C, H, W = latent_fill.shape |
|
height, width = H * 8, W * 8 |
|
final_height, final_width = inpaint_worker.current_task.image.shape[:2] |
|
print(f'Final resolution is {str((final_height, final_width))}, latent is {str((height, width))}.') |
|
|
|
if 'cn' in goals: |
|
for task in cn_tasks[flags.cn_canny]: |
|
cn_img, cn_stop, cn_weight = task |
|
cn_img = resize_image(HWC3(cn_img), width=width, height=height) |
|
|
|
if not skipping_cn_preprocessor: |
|
cn_img = preprocessors.canny_pyramid(cn_img, canny_low_threshold, canny_high_threshold) |
|
|
|
cn_img = HWC3(cn_img) |
|
task[0] = core.numpy_to_pytorch(cn_img) |
|
if debugging_cn_preprocessor: |
|
yield_result(async_task, cn_img, do_not_show_finished_images=True) |
|
return |
|
for task in cn_tasks[flags.cn_cpds]: |
|
cn_img, cn_stop, cn_weight = task |
|
cn_img = resize_image(HWC3(cn_img), width=width, height=height) |
|
|
|
if not skipping_cn_preprocessor: |
|
cn_img = preprocessors.cpds(cn_img) |
|
|
|
cn_img = HWC3(cn_img) |
|
task[0] = core.numpy_to_pytorch(cn_img) |
|
if debugging_cn_preprocessor: |
|
yield_result(async_task, cn_img, do_not_show_finished_images=True) |
|
return |
|
for task in cn_tasks[flags.cn_ip]: |
|
cn_img, cn_stop, cn_weight = task |
|
cn_img = HWC3(cn_img) |
|
|
|
|
|
cn_img = resize_image(cn_img, width=224, height=224, resize_mode=0) |
|
|
|
task[0] = ip_adapter.preprocess(cn_img, ip_adapter_path=ip_adapter_path) |
|
if debugging_cn_preprocessor: |
|
yield_result(async_task, cn_img, do_not_show_finished_images=True) |
|
return |
|
for task in cn_tasks[flags.cn_ip_face]: |
|
cn_img, cn_stop, cn_weight = task |
|
cn_img = HWC3(cn_img) |
|
|
|
if not skipping_cn_preprocessor: |
|
cn_img = extras.face_crop.crop_image(cn_img) |
|
|
|
|
|
cn_img = resize_image(cn_img, width=224, height=224, resize_mode=0) |
|
|
|
task[0] = ip_adapter.preprocess(cn_img, ip_adapter_path=ip_adapter_face_path) |
|
if debugging_cn_preprocessor: |
|
yield_result(async_task, cn_img, do_not_show_finished_images=True) |
|
return |
|
|
|
all_ip_tasks = cn_tasks[flags.cn_ip] + cn_tasks[flags.cn_ip_face] |
|
|
|
if len(all_ip_tasks) > 0: |
|
pipeline.final_unet = ip_adapter.patch_model(pipeline.final_unet, all_ip_tasks) |
|
|
|
if freeu_enabled: |
|
print(f'FreeU is enabled!') |
|
pipeline.final_unet = core.apply_freeu( |
|
pipeline.final_unet, |
|
freeu_b1, |
|
freeu_b2, |
|
freeu_s1, |
|
freeu_s2 |
|
) |
|
|
|
all_steps = steps * image_number |
|
|
|
print(f'[Parameters] Denoising Strength = {denoising_strength}') |
|
|
|
if isinstance(initial_latent, dict) and 'samples' in initial_latent: |
|
log_shape = initial_latent['samples'].shape |
|
else: |
|
log_shape = f'Image Space {(height, width)}' |
|
|
|
print(f'[Parameters] Initial Latent shape: {log_shape}') |
|
|
|
preparation_time = time.perf_counter() - execution_start_time |
|
print(f'Preparation time: {preparation_time:.2f} seconds') |
|
|
|
final_sampler_name = sampler_name |
|
final_scheduler_name = scheduler_name |
|
|
|
if scheduler_name == 'lcm': |
|
final_scheduler_name = 'sgm_uniform' |
|
if pipeline.final_unet is not None: |
|
pipeline.final_unet = core.opModelSamplingDiscrete.patch( |
|
pipeline.final_unet, |
|
sampling='lcm', |
|
zsnr=False)[0] |
|
if pipeline.final_refiner_unet is not None: |
|
pipeline.final_refiner_unet = core.opModelSamplingDiscrete.patch( |
|
pipeline.final_refiner_unet, |
|
sampling='lcm', |
|
zsnr=False)[0] |
|
print('Using lcm scheduler.') |
|
|
|
async_task.yields.append(['preview', (13, 'Moving model to GPU ...', None)]) |
|
|
|
def callback(step, x0, x, total_steps, y): |
|
done_steps = current_task_id * steps + step |
|
async_task.yields.append(['preview', ( |
|
int(15.0 + 85.0 * float(done_steps) / float(all_steps)), |
|
f'Step {step}/{total_steps} in the {current_task_id + 1}{ordinal_suffix(current_task_id + 1)} Sampling', y)]) |
|
|
|
for current_task_id, task in enumerate(tasks): |
|
execution_start_time = time.perf_counter() |
|
|
|
try: |
|
if async_task.last_stop is not False: |
|
ldm_patched.modules.model_management.interrupt_current_processing() |
|
positive_cond, negative_cond = task['c'], task['uc'] |
|
|
|
if 'cn' in goals: |
|
for cn_flag, cn_path in [ |
|
(flags.cn_canny, controlnet_canny_path), |
|
(flags.cn_cpds, controlnet_cpds_path) |
|
]: |
|
for cn_img, cn_stop, cn_weight in cn_tasks[cn_flag]: |
|
positive_cond, negative_cond = core.apply_controlnet( |
|
positive_cond, negative_cond, |
|
pipeline.loaded_ControlNets[cn_path], cn_img, cn_weight, 0, cn_stop) |
|
|
|
imgs = pipeline.process_diffusion( |
|
positive_cond=positive_cond, |
|
negative_cond=negative_cond, |
|
steps=steps, |
|
switch=switch, |
|
width=width, |
|
height=height, |
|
image_seed=task['task_seed'], |
|
callback=callback, |
|
sampler_name=final_sampler_name, |
|
scheduler_name=final_scheduler_name, |
|
latent=initial_latent, |
|
denoise=denoising_strength, |
|
tiled=tiled, |
|
cfg_scale=cfg_scale, |
|
refiner_swap_method=refiner_swap_method, |
|
disable_preview=disable_preview |
|
) |
|
|
|
del task['c'], task['uc'], positive_cond, negative_cond |
|
|
|
if inpaint_worker.current_task is not None: |
|
imgs = [inpaint_worker.current_task.post_process(x) for x in imgs] |
|
|
|
img_paths = [] |
|
for x in imgs: |
|
d = [('Prompt', 'prompt', task['log_positive_prompt']), |
|
('Negative Prompt', 'negative_prompt', task['log_negative_prompt']), |
|
('Fooocus V2 Expansion', 'prompt_expansion', task['expansion']), |
|
('Styles', 'styles', str(raw_style_selections)), |
|
('Performance', 'performance', performance_selection.value)] |
|
|
|
if performance_selection.steps() != steps: |
|
d.append(('Steps', 'steps', steps)) |
|
|
|
d += [('Resolution', 'resolution', str((width, height))), |
|
('Guidance Scale', 'guidance_scale', guidance_scale), |
|
('Sharpness', 'sharpness', sharpness), |
|
('ADM Guidance', 'adm_guidance', str(( |
|
modules.patch.patch_settings[pid].positive_adm_scale, |
|
modules.patch.patch_settings[pid].negative_adm_scale, |
|
modules.patch.patch_settings[pid].adm_scaler_end))), |
|
('Base Model', 'base_model', base_model_name), |
|
('Refiner Model', 'refiner_model', refiner_model_name), |
|
('Refiner Switch', 'refiner_switch', refiner_switch)] |
|
|
|
if refiner_model_name != 'None': |
|
if overwrite_switch > 0: |
|
d.append(('Overwrite Switch', 'overwrite_switch', overwrite_switch)) |
|
if refiner_swap_method != flags.refiner_swap_method: |
|
d.append(('Refiner Swap Method', 'refiner_swap_method', refiner_swap_method)) |
|
if modules.patch.patch_settings[pid].adaptive_cfg != modules.config.default_cfg_tsnr: |
|
d.append(('CFG Mimicking from TSNR', 'adaptive_cfg', modules.patch.patch_settings[pid].adaptive_cfg)) |
|
|
|
d.append(('Sampler', 'sampler', sampler_name)) |
|
d.append(('Scheduler', 'scheduler', scheduler_name)) |
|
d.append(('Seed', 'seed', task['task_seed'])) |
|
|
|
if freeu_enabled: |
|
d.append(('FreeU', 'freeu', str((freeu_b1, freeu_b2, freeu_s1, freeu_s2)))) |
|
|
|
for li, (n, w) in enumerate(loras): |
|
if n != 'None': |
|
d.append((f'LoRA {li + 1}', f'lora_combined_{li + 1}', f'{n} : {w}')) |
|
|
|
metadata_parser = None |
|
if save_metadata_to_images: |
|
metadata_parser = modules.meta_parser.get_metadata_parser(metadata_scheme) |
|
metadata_parser.set_data(task['log_positive_prompt'], task['positive'], |
|
task['log_negative_prompt'], task['negative'], |
|
steps, base_model_name, refiner_model_name, loras) |
|
d.append(('Metadata Scheme', 'metadata_scheme', metadata_scheme.value if save_metadata_to_images else save_metadata_to_images)) |
|
d.append(('Version', 'version', 'Fooocus v' + fooocus_version.version)) |
|
img_paths.append(log(x, d, metadata_parser, output_format)) |
|
|
|
yield_result(async_task, img_paths, do_not_show_finished_images=len(tasks) == 1 or disable_intermediate_results) |
|
except ldm_patched.modules.model_management.InterruptProcessingException as e: |
|
if async_task.last_stop == 'skip': |
|
print('User skipped') |
|
async_task.last_stop = False |
|
continue |
|
else: |
|
print('User stopped') |
|
break |
|
|
|
execution_time = time.perf_counter() - execution_start_time |
|
print(f'Generating and saving time: {execution_time:.2f} seconds') |
|
async_task.processing = False |
|
return |
|
|
|
while True: |
|
time.sleep(0.01) |
|
if len(async_tasks) > 0: |
|
task = async_tasks.pop(0) |
|
generate_image_grid = task.args.pop(0) |
|
|
|
try: |
|
handler(task) |
|
if generate_image_grid: |
|
build_image_wall(task) |
|
task.yields.append(['finish', task.results]) |
|
pipeline.prepare_text_encoder(async_call=True) |
|
except: |
|
traceback.print_exc() |
|
task.yields.append(['finish', task.results]) |
|
finally: |
|
if pid in modules.patch.patch_settings: |
|
del modules.patch.patch_settings[pid] |
|
pass |
|
|
|
|
|
threading.Thread(target=worker, daemon=True).start() |
|
|