|
import cv2 |
|
import numpy as np |
|
|
|
|
|
def centered_canny(x: np.ndarray, canny_low_threshold, canny_high_threshold): |
|
assert isinstance(x, np.ndarray) |
|
assert x.ndim == 2 and x.dtype == np.uint8 |
|
|
|
y = cv2.Canny(x, int(canny_low_threshold), int(canny_high_threshold)) |
|
y = y.astype(np.float32) / 255.0 |
|
return y |
|
|
|
|
|
def centered_canny_color(x: np.ndarray, canny_low_threshold, canny_high_threshold): |
|
assert isinstance(x, np.ndarray) |
|
assert x.ndim == 3 and x.shape[2] == 3 |
|
|
|
result = [centered_canny(x[..., i], canny_low_threshold, canny_high_threshold) for i in range(3)] |
|
result = np.stack(result, axis=2) |
|
return result |
|
|
|
|
|
def pyramid_canny_color(x: np.ndarray, canny_low_threshold, canny_high_threshold): |
|
assert isinstance(x, np.ndarray) |
|
assert x.ndim == 3 and x.shape[2] == 3 |
|
|
|
H, W, C = x.shape |
|
acc_edge = None |
|
|
|
for k in [0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]: |
|
Hs, Ws = int(H * k), int(W * k) |
|
small = cv2.resize(x, (Ws, Hs), interpolation=cv2.INTER_AREA) |
|
edge = centered_canny_color(small, canny_low_threshold, canny_high_threshold) |
|
if acc_edge is None: |
|
acc_edge = edge |
|
else: |
|
acc_edge = cv2.resize(acc_edge, (edge.shape[1], edge.shape[0]), interpolation=cv2.INTER_LINEAR) |
|
acc_edge = acc_edge * 0.75 + edge * 0.25 |
|
|
|
return acc_edge |
|
|
|
|
|
def norm255(x, low=4, high=96): |
|
assert isinstance(x, np.ndarray) |
|
assert x.ndim == 2 and x.dtype == np.float32 |
|
|
|
v_min = np.percentile(x, low) |
|
v_max = np.percentile(x, high) |
|
|
|
x -= v_min |
|
x /= v_max - v_min |
|
|
|
return x * 255.0 |
|
|
|
|
|
def canny_pyramid(x, canny_low_threshold, canny_high_threshold): |
|
|
|
|
|
|
|
color_canny = pyramid_canny_color(x, canny_low_threshold, canny_high_threshold) |
|
result = np.sum(color_canny, axis=2) |
|
|
|
return norm255(result, low=1, high=99).clip(0, 255).astype(np.uint8) |
|
|
|
|
|
def cpds(x): |
|
|
|
|
|
|
|
|
|
raw = cv2.GaussianBlur(x, (0, 0), 0.8) |
|
density, boost = cv2.decolor(raw) |
|
|
|
raw = raw.astype(np.float32) |
|
density = density.astype(np.float32) |
|
boost = boost.astype(np.float32) |
|
|
|
offset = np.sum((raw - boost) ** 2.0, axis=2) ** 0.5 |
|
result = density + offset |
|
|
|
return norm255(result, low=4, high=96).clip(0, 255).astype(np.uint8) |
|
|