Spaces:
Runtime error
Runtime error
import torch | |
import ldm_patched.modules.model_management | |
def cast_bias_weight(s, input): | |
bias = None | |
non_blocking = ldm_patched.modules.model_management.device_supports_non_blocking(input.device) | |
if s.bias is not None: | |
bias = s.bias.to(device=input.device, dtype=input.dtype, non_blocking=non_blocking) | |
weight = s.weight.to(device=input.device, dtype=input.dtype, non_blocking=non_blocking) | |
return weight, bias | |
class disable_weight_init: | |
class Linear(torch.nn.Linear): | |
ldm_patched_cast_weights = False | |
def reset_parameters(self): | |
return None | |
def forward_ldm_patched_cast_weights(self, input): | |
weight, bias = cast_bias_weight(self, input) | |
return torch.nn.functional.linear(input, weight, bias) | |
def forward(self, *args, **kwargs): | |
if self.ldm_patched_cast_weights: | |
return self.forward_ldm_patched_cast_weights(*args, **kwargs) | |
else: | |
return super().forward(*args, **kwargs) | |
class Conv2d(torch.nn.Conv2d): | |
ldm_patched_cast_weights = False | |
def reset_parameters(self): | |
return None | |
def forward_ldm_patched_cast_weights(self, input): | |
weight, bias = cast_bias_weight(self, input) | |
return self._conv_forward(input, weight, bias) | |
def forward(self, *args, **kwargs): | |
if self.ldm_patched_cast_weights: | |
return self.forward_ldm_patched_cast_weights(*args, **kwargs) | |
else: | |
return super().forward(*args, **kwargs) | |
class Conv3d(torch.nn.Conv3d): | |
ldm_patched_cast_weights = False | |
def reset_parameters(self): | |
return None | |
def forward_ldm_patched_cast_weights(self, input): | |
weight, bias = cast_bias_weight(self, input) | |
return self._conv_forward(input, weight, bias) | |
def forward(self, *args, **kwargs): | |
if self.ldm_patched_cast_weights: | |
return self.forward_ldm_patched_cast_weights(*args, **kwargs) | |
else: | |
return super().forward(*args, **kwargs) | |
class GroupNorm(torch.nn.GroupNorm): | |
ldm_patched_cast_weights = False | |
def reset_parameters(self): | |
return None | |
def forward_ldm_patched_cast_weights(self, input): | |
weight, bias = cast_bias_weight(self, input) | |
return torch.nn.functional.group_norm(input, self.num_groups, weight, bias, self.eps) | |
def forward(self, *args, **kwargs): | |
if self.ldm_patched_cast_weights: | |
return self.forward_ldm_patched_cast_weights(*args, **kwargs) | |
else: | |
return super().forward(*args, **kwargs) | |
class LayerNorm(torch.nn.LayerNorm): | |
ldm_patched_cast_weights = False | |
def reset_parameters(self): | |
return None | |
def forward_ldm_patched_cast_weights(self, input): | |
weight, bias = cast_bias_weight(self, input) | |
return torch.nn.functional.layer_norm(input, self.normalized_shape, weight, bias, self.eps) | |
def forward(self, *args, **kwargs): | |
if self.ldm_patched_cast_weights: | |
return self.forward_ldm_patched_cast_weights(*args, **kwargs) | |
else: | |
return super().forward(*args, **kwargs) | |
def conv_nd(s, dims, *args, **kwargs): | |
if dims == 2: | |
return s.Conv2d(*args, **kwargs) | |
elif dims == 3: | |
return s.Conv3d(*args, **kwargs) | |
else: | |
raise ValueError(f"unsupported dimensions: {dims}") | |
class manual_cast(disable_weight_init): | |
class Linear(disable_weight_init.Linear): | |
ldm_patched_cast_weights = True | |
class Conv2d(disable_weight_init.Conv2d): | |
ldm_patched_cast_weights = True | |
class Conv3d(disable_weight_init.Conv3d): | |
ldm_patched_cast_weights = True | |
class GroupNorm(disable_weight_init.GroupNorm): | |
ldm_patched_cast_weights = True | |
class LayerNorm(disable_weight_init.LayerNorm): | |
ldm_patched_cast_weights = True | |