Spaces:
Runtime error
Runtime error
import torch | |
import ldm_patched.modules.model_management | |
import ldm_patched.modules.samplers | |
import ldm_patched.modules.conds | |
import ldm_patched.modules.utils | |
import math | |
import numpy as np | |
def prepare_noise(latent_image, seed, noise_inds=None): | |
""" | |
creates random noise given a latent image and a seed. | |
optional arg skip can be used to skip and discard x number of noise generations for a given seed | |
""" | |
generator = torch.manual_seed(seed) | |
if noise_inds is None: | |
return torch.randn(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, generator=generator, device="cpu") | |
unique_inds, inverse = np.unique(noise_inds, return_inverse=True) | |
noises = [] | |
for i in range(unique_inds[-1]+1): | |
noise = torch.randn([1] + list(latent_image.size())[1:], dtype=latent_image.dtype, layout=latent_image.layout, generator=generator, device="cpu") | |
if i in unique_inds: | |
noises.append(noise) | |
noises = [noises[i] for i in inverse] | |
noises = torch.cat(noises, axis=0) | |
return noises | |
def prepare_mask(noise_mask, shape, device): | |
"""ensures noise mask is of proper dimensions""" | |
noise_mask = torch.nn.functional.interpolate(noise_mask.reshape((-1, 1, noise_mask.shape[-2], noise_mask.shape[-1])), size=(shape[2], shape[3]), mode="bilinear") | |
noise_mask = torch.cat([noise_mask] * shape[1], dim=1) | |
noise_mask = ldm_patched.modules.utils.repeat_to_batch_size(noise_mask, shape[0]) | |
noise_mask = noise_mask.to(device) | |
return noise_mask | |
def get_models_from_cond(cond, model_type): | |
models = [] | |
for c in cond: | |
if model_type in c: | |
models += [c[model_type]] | |
return models | |
def convert_cond(cond): | |
out = [] | |
for c in cond: | |
temp = c[1].copy() | |
model_conds = temp.get("model_conds", {}) | |
if c[0] is not None: | |
model_conds["c_crossattn"] = ldm_patched.modules.conds.CONDCrossAttn(c[0]) #TODO: remove | |
temp["cross_attn"] = c[0] | |
temp["model_conds"] = model_conds | |
out.append(temp) | |
return out | |
def get_additional_models(positive, negative, dtype): | |
"""loads additional models in positive and negative conditioning""" | |
control_nets = set(get_models_from_cond(positive, "control") + get_models_from_cond(negative, "control")) | |
inference_memory = 0 | |
control_models = [] | |
for m in control_nets: | |
control_models += m.get_models() | |
inference_memory += m.inference_memory_requirements(dtype) | |
gligen = get_models_from_cond(positive, "gligen") + get_models_from_cond(negative, "gligen") | |
gligen = [x[1] for x in gligen] | |
models = control_models + gligen | |
return models, inference_memory | |
def cleanup_additional_models(models): | |
"""cleanup additional models that were loaded""" | |
for m in models: | |
if hasattr(m, 'cleanup'): | |
m.cleanup() | |
def prepare_sampling(model, noise_shape, positive, negative, noise_mask): | |
device = model.load_device | |
positive = convert_cond(positive) | |
negative = convert_cond(negative) | |
if noise_mask is not None: | |
noise_mask = prepare_mask(noise_mask, noise_shape, device) | |
real_model = None | |
models, inference_memory = get_additional_models(positive, negative, model.model_dtype()) | |
ldm_patched.modules.model_management.load_models_gpu([model] + models, model.memory_required([noise_shape[0] * 2] + list(noise_shape[1:])) + inference_memory) | |
real_model = model.model | |
return real_model, positive, negative, noise_mask, models | |
def sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False, noise_mask=None, sigmas=None, callback=None, disable_pbar=False, seed=None): | |
real_model, positive_copy, negative_copy, noise_mask, models = prepare_sampling(model, noise.shape, positive, negative, noise_mask) | |
noise = noise.to(model.load_device) | |
latent_image = latent_image.to(model.load_device) | |
sampler = ldm_patched.modules.samplers.KSampler(real_model, steps=steps, device=model.load_device, sampler=sampler_name, scheduler=scheduler, denoise=denoise, model_options=model.model_options) | |
samples = sampler.sample(noise, positive_copy, negative_copy, cfg=cfg, latent_image=latent_image, start_step=start_step, last_step=last_step, force_full_denoise=force_full_denoise, denoise_mask=noise_mask, sigmas=sigmas, callback=callback, disable_pbar=disable_pbar, seed=seed) | |
samples = samples.to(ldm_patched.modules.model_management.intermediate_device()) | |
cleanup_additional_models(models) | |
cleanup_additional_models(set(get_models_from_cond(positive_copy, "control") + get_models_from_cond(negative_copy, "control"))) | |
return samples | |
def sample_custom(model, noise, cfg, sampler, sigmas, positive, negative, latent_image, noise_mask=None, callback=None, disable_pbar=False, seed=None): | |
real_model, positive_copy, negative_copy, noise_mask, models = prepare_sampling(model, noise.shape, positive, negative, noise_mask) | |
noise = noise.to(model.load_device) | |
latent_image = latent_image.to(model.load_device) | |
sigmas = sigmas.to(model.load_device) | |
samples = ldm_patched.modules.samplers.sample(real_model, noise, positive_copy, negative_copy, cfg, model.load_device, sampler, sigmas, model_options=model.model_options, latent_image=latent_image, denoise_mask=noise_mask, callback=callback, disable_pbar=disable_pbar, seed=seed) | |
samples = samples.to(ldm_patched.modules.model_management.intermediate_device()) | |
cleanup_additional_models(models) | |
cleanup_additional_models(set(get_models_from_cond(positive_copy, "control") + get_models_from_cond(negative_copy, "control"))) | |
return samples | |