Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,40 +1,38 @@
|
|
| 1 |
import pandas as pd
|
| 2 |
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
import os
|
|
|
|
| 4 |
import warnings
|
| 5 |
import gradio as gr
|
| 6 |
from dotenv import load_dotenv
|
| 7 |
|
| 8 |
-
# New imports for the Pandas Agent
|
| 9 |
-
from langchain_openai import OpenAI
|
| 10 |
-
from langchain_experimental.agents.agent_toolkits import create_pandas_dataframe_agent
|
| 11 |
-
|
| 12 |
# Ignore warnings for a cleaner interface
|
| 13 |
warnings.filterwarnings('ignore')
|
| 14 |
# Load environment variables from .env file
|
| 15 |
load_dotenv()
|
| 16 |
|
| 17 |
-
class
|
| 18 |
"""
|
| 19 |
-
|
| 20 |
-
powered by an OpenAI LLM and a Pandas DataFrame Agent.
|
| 21 |
-
This version can perform mathematical calculations, comparisons, and data analysis.
|
| 22 |
"""
|
| 23 |
def __init__(self, openai_api_key: str):
|
| 24 |
-
"""Initializes the system with the OpenAI API key."""
|
| 25 |
os.environ["OPENAI_API_KEY"] = openai_api_key
|
| 26 |
-
# Using a temperature of 0 for deterministic, factual answers.
|
| 27 |
self.llm = OpenAI(temperature=0)
|
| 28 |
-
self.
|
|
|
|
|
|
|
|
|
|
| 29 |
self.logs = []
|
| 30 |
|
| 31 |
-
def load_excel_file(self, file_path: str) ->
|
| 32 |
-
"""
|
| 33 |
-
Loads and processes an Excel file into multiple pandas DataFrames,
|
| 34 |
-
one for each sheet.
|
| 35 |
-
"""
|
| 36 |
self.logs.clear()
|
| 37 |
-
self.excel_data.clear()
|
| 38 |
try:
|
| 39 |
excel_file = pd.ExcelFile(file_path)
|
| 40 |
sheet_names = excel_file.sheet_names
|
|
@@ -43,65 +41,143 @@ class ExcelPandasAgent:
|
|
| 43 |
for sheet_name in sheet_names:
|
| 44 |
try:
|
| 45 |
df = pd.read_excel(file_path, sheet_name=sheet_name)
|
| 46 |
-
# The cleaning function is called here for each sheet
|
| 47 |
df = self._clean_dataframe(df)
|
| 48 |
self.excel_data[sheet_name] = df
|
| 49 |
-
|
|
|
|
|
|
|
|
|
|
| 50 |
except Exception as e:
|
| 51 |
self.logs.append(f"β οΈ Error loading sheet '{sheet_name}': {str(e)}")
|
| 52 |
continue
|
| 53 |
|
| 54 |
-
self.
|
| 55 |
-
|
|
|
|
| 56 |
except Exception as e:
|
| 57 |
raise Exception(f"Error loading Excel file: {str(e)}")
|
| 58 |
|
| 59 |
def _clean_dataframe(self, df: pd.DataFrame) -> pd.DataFrame:
|
| 60 |
-
"""
|
| 61 |
-
Cleans a DataFrame by removing empty rows/columns and robustly converting types.
|
| 62 |
-
"""
|
| 63 |
df = df.dropna(how='all').dropna(axis=1, how='all').reset_index(drop=True)
|
| 64 |
for col in df.columns:
|
| 65 |
-
# Apply to object columns that might contain mixed numeric/text data
|
| 66 |
if df[col].dtype == 'object':
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
|
| 76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
|
| 78 |
-
def
|
| 79 |
"""
|
| 80 |
-
Processes a user query against
|
|
|
|
|
|
|
| 81 |
"""
|
| 82 |
-
|
| 83 |
-
return f"Error: Sheet '{sheet_name}' not found. Please select a valid sheet."
|
| 84 |
-
|
| 85 |
-
df = self.excel_data[sheet_name]
|
| 86 |
-
|
| 87 |
try:
|
| 88 |
-
#
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
max_iterations=50,
|
| 94 |
-
max_execution_time=300,
|
| 95 |
-
agent_executor_kwargs={"handle_parsing_errors": True},
|
| 96 |
-
allow_dangerous_code=True
|
| 97 |
-
)
|
| 98 |
-
# Invoke the agent with the user's query.
|
| 99 |
-
response = pandas_agent.invoke(query)
|
| 100 |
|
| 101 |
-
|
| 102 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
except Exception as e:
|
| 104 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 105 |
|
| 106 |
# --- Gradio Interface ---
|
| 107 |
|
|
@@ -112,47 +188,53 @@ def process_file(api_key, file_obj):
|
|
| 112 |
if file_obj is None:
|
| 113 |
raise gr.Error("Please upload an Excel file.")
|
| 114 |
try:
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
|
|
|
|
|
|
|
|
|
| 118 |
|
| 119 |
-
# Return updates to the UI components
|
| 120 |
return (
|
| 121 |
loading_logs,
|
| 122 |
-
|
| 123 |
-
gr.update(choices=
|
| 124 |
-
gr.update(visible=True),
|
| 125 |
-
gr.update(visible=True),
|
| 126 |
-
gr.update(visible=
|
| 127 |
)
|
| 128 |
except Exception as e:
|
| 129 |
raise gr.Error(f"Failed to process file: {e}")
|
| 130 |
|
| 131 |
-
def generate_response(query,
|
| 132 |
"""Gradio function to handle user queries and display results."""
|
| 133 |
if not query:
|
| 134 |
-
raise gr.Error("Please enter a
|
| 135 |
-
if not sheet_name:
|
| 136 |
-
raise gr.Error("Please select a sheet to query from the dropdown.")
|
| 137 |
if system_state is None:
|
| 138 |
raise gr.Error("File not loaded. Please upload and load a file first.")
|
| 139 |
|
| 140 |
try:
|
| 141 |
-
#
|
| 142 |
-
|
|
|
|
|
|
|
|
|
|
| 143 |
|
| 144 |
-
|
| 145 |
-
|
|
|
|
|
|
|
|
|
|
| 146 |
except Exception as e:
|
| 147 |
raise gr.Error(f"Error during query: {e}")
|
| 148 |
|
| 149 |
# --- UI Layout ---
|
| 150 |
|
| 151 |
-
with gr.Blocks(theme=gr.themes.Soft(
|
| 152 |
system_state = gr.State(None)
|
| 153 |
|
| 154 |
-
gr.Markdown("#
|
| 155 |
-
gr.Markdown("
|
| 156 |
|
| 157 |
with gr.Row():
|
| 158 |
with gr.Column(scale=1):
|
|
@@ -165,26 +247,26 @@ with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue"), title="Excel AI Agent")
|
|
| 165 |
)
|
| 166 |
file_input = gr.File(label="Upload Excel File", file_types=[".xlsx", ".xls"])
|
| 167 |
load_button = gr.Button("Load File", variant="primary")
|
| 168 |
-
status_output = gr.Textbox(label="
|
| 169 |
|
| 170 |
with gr.Column(scale=2):
|
| 171 |
gr.Markdown("### 2. Ask a Question")
|
| 172 |
sheet_selector = gr.Dropdown(
|
| 173 |
-
label="Select a
|
| 174 |
-
|
| 175 |
visible=False
|
| 176 |
)
|
| 177 |
query_input = gr.Textbox(
|
| 178 |
label="Your Question",
|
| 179 |
-
placeholder="e.g., 'What
|
| 180 |
-
visible=False
|
| 181 |
-
lines=3
|
| 182 |
)
|
| 183 |
ask_button = gr.Button("Get Answer", variant="primary", visible=False)
|
| 184 |
|
| 185 |
results_accordion = gr.Accordion("Results", open=False, visible=False)
|
| 186 |
with results_accordion:
|
| 187 |
-
|
|
|
|
| 188 |
|
| 189 |
# --- Event Handlers ---
|
| 190 |
|
|
@@ -196,10 +278,12 @@ with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue"), title="Excel AI Agent")
|
|
| 196 |
|
| 197 |
ask_button.click(
|
| 198 |
fn=generate_response,
|
| 199 |
-
inputs=[query_input, sheet_selector, system_state],
|
| 200 |
-
outputs=[
|
|
|
|
|
|
|
|
|
|
| 201 |
)
|
| 202 |
|
| 203 |
-
|
| 204 |
if __name__ == "__main__":
|
| 205 |
demo.launch(share=True)
|
|
|
|
| 1 |
import pandas as pd
|
| 2 |
import numpy as np
|
| 3 |
+
from langchain_openai import OpenAI
|
| 4 |
+
from langchain_core.documents import Document
|
| 5 |
+
from langchain_community.vectorstores import FAISS
|
| 6 |
+
from langchain_openai import OpenAIEmbeddings
|
| 7 |
+
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
| 8 |
+
import re
|
| 9 |
import os
|
| 10 |
+
from typing import Dict, List, Any
|
| 11 |
import warnings
|
| 12 |
import gradio as gr
|
| 13 |
from dotenv import load_dotenv
|
| 14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
# Ignore warnings for a cleaner interface
|
| 16 |
warnings.filterwarnings('ignore')
|
| 17 |
# Load environment variables from .env file
|
| 18 |
load_dotenv()
|
| 19 |
|
| 20 |
+
class ExcelAIQuerySystem:
|
| 21 |
"""
|
| 22 |
+
A system to query Excel files using natural language, powered by OpenAI and LangChain.
|
|
|
|
|
|
|
| 23 |
"""
|
| 24 |
def __init__(self, openai_api_key: str):
|
|
|
|
| 25 |
os.environ["OPENAI_API_KEY"] = openai_api_key
|
|
|
|
| 26 |
self.llm = OpenAI(temperature=0)
|
| 27 |
+
self.embeddings = OpenAIEmbeddings()
|
| 28 |
+
self.excel_data = {}
|
| 29 |
+
self.sheet_descriptions = {}
|
| 30 |
+
self.vectorstore = None
|
| 31 |
self.logs = []
|
| 32 |
|
| 33 |
+
def load_excel_file(self, file_path: str) -> str:
|
| 34 |
+
"""Loads and processes an Excel file, generating descriptions and a vector store."""
|
|
|
|
|
|
|
|
|
|
| 35 |
self.logs.clear()
|
|
|
|
| 36 |
try:
|
| 37 |
excel_file = pd.ExcelFile(file_path)
|
| 38 |
sheet_names = excel_file.sheet_names
|
|
|
|
| 41 |
for sheet_name in sheet_names:
|
| 42 |
try:
|
| 43 |
df = pd.read_excel(file_path, sheet_name=sheet_name)
|
|
|
|
| 44 |
df = self._clean_dataframe(df)
|
| 45 |
self.excel_data[sheet_name] = df
|
| 46 |
+
|
| 47 |
+
description = self._generate_sheet_description(sheet_name, df)
|
| 48 |
+
self.sheet_descriptions[sheet_name] = description
|
| 49 |
+
self.logs.append(f" - Loaded and described sheet '{sheet_name}' ({df.shape[0]} rows Γ {df.shape[1]} columns)")
|
| 50 |
except Exception as e:
|
| 51 |
self.logs.append(f"β οΈ Error loading sheet '{sheet_name}': {str(e)}")
|
| 52 |
continue
|
| 53 |
|
| 54 |
+
self._create_vectorstore()
|
| 55 |
+
self.logs.append("β
Vector store created successfully.")
|
| 56 |
+
return "\n".join(self.logs)
|
| 57 |
except Exception as e:
|
| 58 |
raise Exception(f"Error loading Excel file: {str(e)}")
|
| 59 |
|
| 60 |
def _clean_dataframe(self, df: pd.DataFrame) -> pd.DataFrame:
|
| 61 |
+
"""Cleans a DataFrame by removing empty rows/columns and converting data types."""
|
|
|
|
|
|
|
| 62 |
df = df.dropna(how='all').dropna(axis=1, how='all').reset_index(drop=True)
|
| 63 |
for col in df.columns:
|
|
|
|
| 64 |
if df[col].dtype == 'object':
|
| 65 |
+
try:
|
| 66 |
+
df[col] = pd.to_datetime(df[col], errors='ignore')
|
| 67 |
+
except:
|
| 68 |
+
pass
|
| 69 |
+
try:
|
| 70 |
+
df[col] = pd.to_numeric(df[col], errors='ignore')
|
| 71 |
+
except:
|
| 72 |
+
pass
|
| 73 |
+
return df
|
| 74 |
+
|
| 75 |
+
def _generate_sheet_description(self, sheet_name: str, df: pd.DataFrame) -> str:
|
| 76 |
+
"""Generates a text description of a DataFrame using an LLM."""
|
| 77 |
+
sample_data = df.head(3).to_string()
|
| 78 |
+
prompt = f"""
|
| 79 |
+
Analyze this Excel sheet and provide a concise one-paragraph summary.
|
| 80 |
+
Sheet Name: {sheet_name}
|
| 81 |
+
Columns: {list(df.columns)}
|
| 82 |
+
Sample Data:
|
| 83 |
+
{sample_data}
|
| 84 |
+
|
| 85 |
+
Focus on the main purpose of the data, key metrics, and the time period covered.
|
| 86 |
+
"""
|
| 87 |
+
try:
|
| 88 |
+
return self.llm.invoke(prompt)
|
| 89 |
+
except Exception:
|
| 90 |
+
return f"Sheet: {sheet_name}, Columns: {', '.join(list(df.columns))}"
|
| 91 |
|
| 92 |
+
def _create_vectorstore(self):
|
| 93 |
+
"""Creates a FAISS vector store from sheet descriptions for similarity search."""
|
| 94 |
+
documents = [
|
| 95 |
+
Document(page_content=desc, metadata={"sheet_name": name})
|
| 96 |
+
for name, desc in self.sheet_descriptions.items()
|
| 97 |
+
]
|
| 98 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
| 99 |
+
splits = text_splitter.split_documents(documents)
|
| 100 |
+
self.vectorstore = FAISS.from_documents(splits, self.embeddings)
|
| 101 |
|
| 102 |
+
def identify_relevant_sheets(self, query: str) -> List[str]:
|
| 103 |
+
"""Identifies the most relevant sheets for a given query using the vector store."""
|
| 104 |
+
if not self.vectorstore:
|
| 105 |
+
return list(self.excel_data.keys())
|
| 106 |
+
try:
|
| 107 |
+
docs = self.vectorstore.similarity_search(query, k=3)
|
| 108 |
+
sheet_names = [doc.metadata['sheet_name'] for doc in docs if 'sheet_name' in doc.metadata]
|
| 109 |
+
return list(dict.fromkeys(sheet_names))[:5]
|
| 110 |
+
except Exception:
|
| 111 |
+
return list(self.excel_data.keys())
|
| 112 |
|
| 113 |
+
def query_data(self, query: str, selected_sheet: str = None) -> Dict[str, Any]:
|
| 114 |
"""
|
| 115 |
+
Processes a user query against the loaded Excel data.
|
| 116 |
+
If a sheet is selected, it queries that sheet directly.
|
| 117 |
+
Otherwise, it identifies the most relevant sheets.
|
| 118 |
"""
|
| 119 |
+
results = {'query': query, 'relevant_sheets': [], 'sheet_results': {}, 'summary': '', 'insights': []}
|
|
|
|
|
|
|
|
|
|
|
|
|
| 120 |
try:
|
| 121 |
+
# If a specific sheet is selected (and it's not the default auto-select), use it.
|
| 122 |
+
if selected_sheet and selected_sheet != "Auto-Select based on Query":
|
| 123 |
+
relevant_sheets = [selected_sheet]
|
| 124 |
+
else:
|
| 125 |
+
relevant_sheets = self.identify_relevant_sheets(query)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
|
| 127 |
+
results['relevant_sheets'] = relevant_sheets
|
| 128 |
+
|
| 129 |
+
for sheet_name in relevant_sheets:
|
| 130 |
+
if sheet_name not in self.excel_data:
|
| 131 |
+
continue
|
| 132 |
+
df = self.excel_data[sheet_name]
|
| 133 |
+
analysis_prompt = f"""
|
| 134 |
+
Analyze the data from sheet '{sheet_name}' to answer the query: "{query}"
|
| 135 |
+
Columns: {list(df.columns)}
|
| 136 |
+
Sample Data:
|
| 137 |
+
{df.head(5).to_string()}
|
| 138 |
+
|
| 139 |
+
Provide a direct answer, including key numbers, trends, or patterns.
|
| 140 |
+
"""
|
| 141 |
+
response = self.llm.invoke(analysis_prompt)
|
| 142 |
+
results['sheet_results'][sheet_name] = {'response': response}
|
| 143 |
+
|
| 144 |
+
results['summary'] = self._generate_summary(query, results['sheet_results'])
|
| 145 |
+
results['insights'] = self._extract_insights(results['sheet_results'])
|
| 146 |
+
return results
|
| 147 |
except Exception as e:
|
| 148 |
+
results['summary'] = f"Error processing query: {str(e)}"
|
| 149 |
+
return results
|
| 150 |
+
|
| 151 |
+
def _generate_summary(self, query: str, sheet_results: Dict) -> str:
|
| 152 |
+
"""Generates a final, consolidated summary from individual sheet analyses."""
|
| 153 |
+
if not sheet_results:
|
| 154 |
+
return "No relevant data found to answer the query."
|
| 155 |
+
|
| 156 |
+
combined_responses = "\n\n".join(
|
| 157 |
+
f"--- Analysis from Sheet '{name}' ---\n{res['response']}"
|
| 158 |
+
for name, res in sheet_results.items()
|
| 159 |
+
)
|
| 160 |
+
prompt = f"""
|
| 161 |
+
Based on the following analyses, provide a final, consolidated answer to the query.
|
| 162 |
+
Original Query: {query}
|
| 163 |
+
|
| 164 |
+
{combined_responses}
|
| 165 |
+
|
| 166 |
+
Synthesize these findings into a clear and direct summary.
|
| 167 |
+
"""
|
| 168 |
+
return self.llm.invoke(prompt)
|
| 169 |
+
|
| 170 |
+
def _extract_insights(self, sheet_results: Dict) -> List[str]:
|
| 171 |
+
"""Extracts simple, actionable insights from the analysis results."""
|
| 172 |
+
insights = set()
|
| 173 |
+
for sheet_name, result in sheet_results.items():
|
| 174 |
+
response = result.get('response', '').lower()
|
| 175 |
+
if re.search(r'\b\d+\.?\d*\b', response):
|
| 176 |
+
insights.add(f"Numerical data found in '{sheet_name}'")
|
| 177 |
+
trend_keywords = ['increase', 'decrease', 'growth', 'decline', 'trend', 'pattern']
|
| 178 |
+
if any(keyword in response for keyword in trend_keywords):
|
| 179 |
+
insights.add(f"Trend analysis available in '{sheet_name}'")
|
| 180 |
+
return list(insights)
|
| 181 |
|
| 182 |
# --- Gradio Interface ---
|
| 183 |
|
|
|
|
| 188 |
if file_obj is None:
|
| 189 |
raise gr.Error("Please upload an Excel file.")
|
| 190 |
try:
|
| 191 |
+
excel_system = ExcelAIQuerySystem(api_key)
|
| 192 |
+
loading_logs = excel_system.load_excel_file(file_obj.name)
|
| 193 |
+
|
| 194 |
+
# Get sheet names for the dropdown
|
| 195 |
+
sheet_names = list(excel_system.excel_data.keys())
|
| 196 |
+
dropdown_choices = ["Auto-Select based on Query"] + sheet_names
|
| 197 |
|
|
|
|
| 198 |
return (
|
| 199 |
loading_logs,
|
| 200 |
+
excel_system,
|
| 201 |
+
gr.update(choices=dropdown_choices, value=dropdown_choices[0], visible=True), # Update dropdown
|
| 202 |
+
gr.update(visible=True), # Query input
|
| 203 |
+
gr.update(visible=True), # Ask button
|
| 204 |
+
gr.update(visible=True) # Results accordion
|
| 205 |
)
|
| 206 |
except Exception as e:
|
| 207 |
raise gr.Error(f"Failed to process file: {e}")
|
| 208 |
|
| 209 |
+
def generate_response(query, sheet_selection, system_state):
|
| 210 |
"""Gradio function to handle user queries and display results."""
|
| 211 |
if not query:
|
| 212 |
+
raise gr.Error("Please enter a query.")
|
|
|
|
|
|
|
| 213 |
if system_state is None:
|
| 214 |
raise gr.Error("File not loaded. Please upload and load a file first.")
|
| 215 |
|
| 216 |
try:
|
| 217 |
+
# Pass the selected sheet to the query function
|
| 218 |
+
result = system_state.query_data(query, selected_sheet=sheet_selection)
|
| 219 |
+
summary = result.get('summary', 'No summary available.')
|
| 220 |
+
sheets = ", ".join(result.get('relevant_sheets', []))
|
| 221 |
+
insights = ", ".join(result.get('insights', []))
|
| 222 |
|
| 223 |
+
details = f"**π Relevant Sheets Identified:**\n{sheets}\n\n"
|
| 224 |
+
if insights:
|
| 225 |
+
details += f"**π‘ Key Insights:**\n{insights}"
|
| 226 |
+
|
| 227 |
+
return summary, details
|
| 228 |
except Exception as e:
|
| 229 |
raise gr.Error(f"Error during query: {e}")
|
| 230 |
|
| 231 |
# --- UI Layout ---
|
| 232 |
|
| 233 |
+
with gr.Blocks(theme=gr.themes.Soft(), title="Excel AI Query System") as demo:
|
| 234 |
system_state = gr.State(None)
|
| 235 |
|
| 236 |
+
gr.Markdown("# π Excel AI Query System")
|
| 237 |
+
gr.Markdown("Upload an Excel file, and ask questions about your data in plain English.")
|
| 238 |
|
| 239 |
with gr.Row():
|
| 240 |
with gr.Column(scale=1):
|
|
|
|
| 247 |
)
|
| 248 |
file_input = gr.File(label="Upload Excel File", file_types=[".xlsx", ".xls"])
|
| 249 |
load_button = gr.Button("Load File", variant="primary")
|
| 250 |
+
status_output = gr.Textbox(label="Loading Status", interactive=False, lines=5)
|
| 251 |
|
| 252 |
with gr.Column(scale=2):
|
| 253 |
gr.Markdown("### 2. Ask a Question")
|
| 254 |
sheet_selector = gr.Dropdown(
|
| 255 |
+
label="π Select a Sheet to Query",
|
| 256 |
+
info="Choose a specific sheet, or let the AI decide automatically.",
|
| 257 |
visible=False
|
| 258 |
)
|
| 259 |
query_input = gr.Textbox(
|
| 260 |
label="Your Question",
|
| 261 |
+
placeholder="e.g., 'What were the total sales in Q3?' or 'Show me the performance trend for Product X.'",
|
| 262 |
+
visible=False
|
|
|
|
| 263 |
)
|
| 264 |
ask_button = gr.Button("Get Answer", variant="primary", visible=False)
|
| 265 |
|
| 266 |
results_accordion = gr.Accordion("Results", open=False, visible=False)
|
| 267 |
with results_accordion:
|
| 268 |
+
summary_output = gr.Markdown(label="Summary")
|
| 269 |
+
details_output = gr.Markdown(label="Details")
|
| 270 |
|
| 271 |
# --- Event Handlers ---
|
| 272 |
|
|
|
|
| 278 |
|
| 279 |
ask_button.click(
|
| 280 |
fn=generate_response,
|
| 281 |
+
inputs=[query_input, sheet_selector, system_state], # Add sheet_selector as an input
|
| 282 |
+
outputs=[summary_output, details_output]
|
| 283 |
+
).then(
|
| 284 |
+
lambda: gr.update(open=True),
|
| 285 |
+
outputs=results_accordion
|
| 286 |
)
|
| 287 |
|
|
|
|
| 288 |
if __name__ == "__main__":
|
| 289 |
demo.launch(share=True)
|