Spaces:
Runtime error
Runtime error
Aditya9790
commited on
Commit
•
8c91daa
1
Parent(s):
226eb53
Upload 103 files
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +4 -0
- LICENSE.md +674 -0
- Tensor go assignment .mp4 +3 -0
- cfg/baseline/r50-csp.yaml +49 -0
- cfg/baseline/x50-csp.yaml +49 -0
- cfg/baseline/yolor-csp-x.yaml +52 -0
- cfg/baseline/yolor-csp.yaml +52 -0
- cfg/baseline/yolor-d6.yaml +63 -0
- cfg/baseline/yolor-e6.yaml +63 -0
- cfg/baseline/yolor-p6.yaml +63 -0
- cfg/baseline/yolor-w6.yaml +63 -0
- cfg/baseline/yolov3-spp.yaml +51 -0
- cfg/baseline/yolov3.yaml +51 -0
- cfg/baseline/yolov4-csp.yaml +52 -0
- cfg/deploy/yolov7-d6.yaml +202 -0
- cfg/deploy/yolov7-e6.yaml +180 -0
- cfg/deploy/yolov7-e6e.yaml +301 -0
- cfg/deploy/yolov7-tiny-silu.yaml +112 -0
- cfg/deploy/yolov7-tiny.yaml +112 -0
- cfg/deploy/yolov7-w6.yaml +158 -0
- cfg/deploy/yolov7.yaml +140 -0
- cfg/deploy/yolov7x.yaml +156 -0
- cfg/training/yolov7-d6.yaml +207 -0
- cfg/training/yolov7-e6.yaml +185 -0
- cfg/training/yolov7-e6e.yaml +306 -0
- cfg/training/yolov7-tiny.yaml +112 -0
- cfg/training/yolov7-w6.yaml +163 -0
- cfg/training/yolov7.yaml +140 -0
- cfg/training/yolov7x.yaml +156 -0
- data/coco.yaml +23 -0
- data/hyp.scratch.custom.yaml +31 -0
- data/hyp.scratch.p5.yaml +31 -0
- data/hyp.scratch.p6.yaml +31 -0
- data/hyp.scratch.tiny.yaml +31 -0
- deploy/triton-inference-server/README.md +164 -0
- deploy/triton-inference-server/boundingbox.py +33 -0
- deploy/triton-inference-server/client.py +334 -0
- deploy/triton-inference-server/data/dog.jpg +0 -0
- deploy/triton-inference-server/data/dog_result.jpg +0 -0
- deploy/triton-inference-server/labels.py +83 -0
- deploy/triton-inference-server/processing.py +51 -0
- deploy/triton-inference-server/render.py +110 -0
- detect.py +196 -0
- detect_or_track.py +285 -0
- export.py +205 -0
- figure/horses_prediction.jpg +0 -0
- figure/mask.png +0 -0
- figure/performance.png +0 -0
- figure/pose.png +0 -0
- figure/tennis.jpg +0 -0
.gitattributes
CHANGED
@@ -32,3 +32,7 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
paper/yolov7.pdf filter=lfs diff=lfs merge=lfs -text
|
36 |
+
street.mp4 filter=lfs diff=lfs merge=lfs -text
|
37 |
+
Tensor[[:space:]]go[[:space:]]assignment[[:space:]].mp4 filter=lfs diff=lfs merge=lfs -text
|
38 |
+
tools/YOLOv7-Dynamic-Batch-TENSORRT.ipynb filter=lfs diff=lfs merge=lfs -text
|
LICENSE.md
ADDED
@@ -0,0 +1,674 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
GNU GENERAL PUBLIC LICENSE
|
2 |
+
Version 3, 29 June 2007
|
3 |
+
|
4 |
+
Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
|
5 |
+
Everyone is permitted to copy and distribute verbatim copies
|
6 |
+
of this license document, but changing it is not allowed.
|
7 |
+
|
8 |
+
Preamble
|
9 |
+
|
10 |
+
The GNU General Public License is a free, copyleft license for
|
11 |
+
software and other kinds of works.
|
12 |
+
|
13 |
+
The licenses for most software and other practical works are designed
|
14 |
+
to take away your freedom to share and change the works. By contrast,
|
15 |
+
the GNU General Public License is intended to guarantee your freedom to
|
16 |
+
share and change all versions of a program--to make sure it remains free
|
17 |
+
software for all its users. We, the Free Software Foundation, use the
|
18 |
+
GNU General Public License for most of our software; it applies also to
|
19 |
+
any other work released this way by its authors. You can apply it to
|
20 |
+
your programs, too.
|
21 |
+
|
22 |
+
When we speak of free software, we are referring to freedom, not
|
23 |
+
price. Our General Public Licenses are designed to make sure that you
|
24 |
+
have the freedom to distribute copies of free software (and charge for
|
25 |
+
them if you wish), that you receive source code or can get it if you
|
26 |
+
want it, that you can change the software or use pieces of it in new
|
27 |
+
free programs, and that you know you can do these things.
|
28 |
+
|
29 |
+
To protect your rights, we need to prevent others from denying you
|
30 |
+
these rights or asking you to surrender the rights. Therefore, you have
|
31 |
+
certain responsibilities if you distribute copies of the software, or if
|
32 |
+
you modify it: responsibilities to respect the freedom of others.
|
33 |
+
|
34 |
+
For example, if you distribute copies of such a program, whether
|
35 |
+
gratis or for a fee, you must pass on to the recipients the same
|
36 |
+
freedoms that you received. You must make sure that they, too, receive
|
37 |
+
or can get the source code. And you must show them these terms so they
|
38 |
+
know their rights.
|
39 |
+
|
40 |
+
Developers that use the GNU GPL protect your rights with two steps:
|
41 |
+
(1) assert copyright on the software, and (2) offer you this License
|
42 |
+
giving you legal permission to copy, distribute and/or modify it.
|
43 |
+
|
44 |
+
For the developers' and authors' protection, the GPL clearly explains
|
45 |
+
that there is no warranty for this free software. For both users' and
|
46 |
+
authors' sake, the GPL requires that modified versions be marked as
|
47 |
+
changed, so that their problems will not be attributed erroneously to
|
48 |
+
authors of previous versions.
|
49 |
+
|
50 |
+
Some devices are designed to deny users access to install or run
|
51 |
+
modified versions of the software inside them, although the manufacturer
|
52 |
+
can do so. This is fundamentally incompatible with the aim of
|
53 |
+
protecting users' freedom to change the software. The systematic
|
54 |
+
pattern of such abuse occurs in the area of products for individuals to
|
55 |
+
use, which is precisely where it is most unacceptable. Therefore, we
|
56 |
+
have designed this version of the GPL to prohibit the practice for those
|
57 |
+
products. If such problems arise substantially in other domains, we
|
58 |
+
stand ready to extend this provision to those domains in future versions
|
59 |
+
of the GPL, as needed to protect the freedom of users.
|
60 |
+
|
61 |
+
Finally, every program is threatened constantly by software patents.
|
62 |
+
States should not allow patents to restrict development and use of
|
63 |
+
software on general-purpose computers, but in those that do, we wish to
|
64 |
+
avoid the special danger that patents applied to a free program could
|
65 |
+
make it effectively proprietary. To prevent this, the GPL assures that
|
66 |
+
patents cannot be used to render the program non-free.
|
67 |
+
|
68 |
+
The precise terms and conditions for copying, distribution and
|
69 |
+
modification follow.
|
70 |
+
|
71 |
+
TERMS AND CONDITIONS
|
72 |
+
|
73 |
+
0. Definitions.
|
74 |
+
|
75 |
+
"This License" refers to version 3 of the GNU General Public License.
|
76 |
+
|
77 |
+
"Copyright" also means copyright-like laws that apply to other kinds of
|
78 |
+
works, such as semiconductor masks.
|
79 |
+
|
80 |
+
"The Program" refers to any copyrightable work licensed under this
|
81 |
+
License. Each licensee is addressed as "you". "Licensees" and
|
82 |
+
"recipients" may be individuals or organizations.
|
83 |
+
|
84 |
+
To "modify" a work means to copy from or adapt all or part of the work
|
85 |
+
in a fashion requiring copyright permission, other than the making of an
|
86 |
+
exact copy. The resulting work is called a "modified version" of the
|
87 |
+
earlier work or a work "based on" the earlier work.
|
88 |
+
|
89 |
+
A "covered work" means either the unmodified Program or a work based
|
90 |
+
on the Program.
|
91 |
+
|
92 |
+
To "propagate" a work means to do anything with it that, without
|
93 |
+
permission, would make you directly or secondarily liable for
|
94 |
+
infringement under applicable copyright law, except executing it on a
|
95 |
+
computer or modifying a private copy. Propagation includes copying,
|
96 |
+
distribution (with or without modification), making available to the
|
97 |
+
public, and in some countries other activities as well.
|
98 |
+
|
99 |
+
To "convey" a work means any kind of propagation that enables other
|
100 |
+
parties to make or receive copies. Mere interaction with a user through
|
101 |
+
a computer network, with no transfer of a copy, is not conveying.
|
102 |
+
|
103 |
+
An interactive user interface displays "Appropriate Legal Notices"
|
104 |
+
to the extent that it includes a convenient and prominently visible
|
105 |
+
feature that (1) displays an appropriate copyright notice, and (2)
|
106 |
+
tells the user that there is no warranty for the work (except to the
|
107 |
+
extent that warranties are provided), that licensees may convey the
|
108 |
+
work under this License, and how to view a copy of this License. If
|
109 |
+
the interface presents a list of user commands or options, such as a
|
110 |
+
menu, a prominent item in the list meets this criterion.
|
111 |
+
|
112 |
+
1. Source Code.
|
113 |
+
|
114 |
+
The "source code" for a work means the preferred form of the work
|
115 |
+
for making modifications to it. "Object code" means any non-source
|
116 |
+
form of a work.
|
117 |
+
|
118 |
+
A "Standard Interface" means an interface that either is an official
|
119 |
+
standard defined by a recognized standards body, or, in the case of
|
120 |
+
interfaces specified for a particular programming language, one that
|
121 |
+
is widely used among developers working in that language.
|
122 |
+
|
123 |
+
The "System Libraries" of an executable work include anything, other
|
124 |
+
than the work as a whole, that (a) is included in the normal form of
|
125 |
+
packaging a Major Component, but which is not part of that Major
|
126 |
+
Component, and (b) serves only to enable use of the work with that
|
127 |
+
Major Component, or to implement a Standard Interface for which an
|
128 |
+
implementation is available to the public in source code form. A
|
129 |
+
"Major Component", in this context, means a major essential component
|
130 |
+
(kernel, window system, and so on) of the specific operating system
|
131 |
+
(if any) on which the executable work runs, or a compiler used to
|
132 |
+
produce the work, or an object code interpreter used to run it.
|
133 |
+
|
134 |
+
The "Corresponding Source" for a work in object code form means all
|
135 |
+
the source code needed to generate, install, and (for an executable
|
136 |
+
work) run the object code and to modify the work, including scripts to
|
137 |
+
control those activities. However, it does not include the work's
|
138 |
+
System Libraries, or general-purpose tools or generally available free
|
139 |
+
programs which are used unmodified in performing those activities but
|
140 |
+
which are not part of the work. For example, Corresponding Source
|
141 |
+
includes interface definition files associated with source files for
|
142 |
+
the work, and the source code for shared libraries and dynamically
|
143 |
+
linked subprograms that the work is specifically designed to require,
|
144 |
+
such as by intimate data communication or control flow between those
|
145 |
+
subprograms and other parts of the work.
|
146 |
+
|
147 |
+
The Corresponding Source need not include anything that users
|
148 |
+
can regenerate automatically from other parts of the Corresponding
|
149 |
+
Source.
|
150 |
+
|
151 |
+
The Corresponding Source for a work in source code form is that
|
152 |
+
same work.
|
153 |
+
|
154 |
+
2. Basic Permissions.
|
155 |
+
|
156 |
+
All rights granted under this License are granted for the term of
|
157 |
+
copyright on the Program, and are irrevocable provided the stated
|
158 |
+
conditions are met. This License explicitly affirms your unlimited
|
159 |
+
permission to run the unmodified Program. The output from running a
|
160 |
+
covered work is covered by this License only if the output, given its
|
161 |
+
content, constitutes a covered work. This License acknowledges your
|
162 |
+
rights of fair use or other equivalent, as provided by copyright law.
|
163 |
+
|
164 |
+
You may make, run and propagate covered works that you do not
|
165 |
+
convey, without conditions so long as your license otherwise remains
|
166 |
+
in force. You may convey covered works to others for the sole purpose
|
167 |
+
of having them make modifications exclusively for you, or provide you
|
168 |
+
with facilities for running those works, provided that you comply with
|
169 |
+
the terms of this License in conveying all material for which you do
|
170 |
+
not control copyright. Those thus making or running the covered works
|
171 |
+
for you must do so exclusively on your behalf, under your direction
|
172 |
+
and control, on terms that prohibit them from making any copies of
|
173 |
+
your copyrighted material outside their relationship with you.
|
174 |
+
|
175 |
+
Conveying under any other circumstances is permitted solely under
|
176 |
+
the conditions stated below. Sublicensing is not allowed; section 10
|
177 |
+
makes it unnecessary.
|
178 |
+
|
179 |
+
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
|
180 |
+
|
181 |
+
No covered work shall be deemed part of an effective technological
|
182 |
+
measure under any applicable law fulfilling obligations under article
|
183 |
+
11 of the WIPO copyright treaty adopted on 20 December 1996, or
|
184 |
+
similar laws prohibiting or restricting circumvention of such
|
185 |
+
measures.
|
186 |
+
|
187 |
+
When you convey a covered work, you waive any legal power to forbid
|
188 |
+
circumvention of technological measures to the extent such circumvention
|
189 |
+
is effected by exercising rights under this License with respect to
|
190 |
+
the covered work, and you disclaim any intention to limit operation or
|
191 |
+
modification of the work as a means of enforcing, against the work's
|
192 |
+
users, your or third parties' legal rights to forbid circumvention of
|
193 |
+
technological measures.
|
194 |
+
|
195 |
+
4. Conveying Verbatim Copies.
|
196 |
+
|
197 |
+
You may convey verbatim copies of the Program's source code as you
|
198 |
+
receive it, in any medium, provided that you conspicuously and
|
199 |
+
appropriately publish on each copy an appropriate copyright notice;
|
200 |
+
keep intact all notices stating that this License and any
|
201 |
+
non-permissive terms added in accord with section 7 apply to the code;
|
202 |
+
keep intact all notices of the absence of any warranty; and give all
|
203 |
+
recipients a copy of this License along with the Program.
|
204 |
+
|
205 |
+
You may charge any price or no price for each copy that you convey,
|
206 |
+
and you may offer support or warranty protection for a fee.
|
207 |
+
|
208 |
+
5. Conveying Modified Source Versions.
|
209 |
+
|
210 |
+
You may convey a work based on the Program, or the modifications to
|
211 |
+
produce it from the Program, in the form of source code under the
|
212 |
+
terms of section 4, provided that you also meet all of these conditions:
|
213 |
+
|
214 |
+
a) The work must carry prominent notices stating that you modified
|
215 |
+
it, and giving a relevant date.
|
216 |
+
|
217 |
+
b) The work must carry prominent notices stating that it is
|
218 |
+
released under this License and any conditions added under section
|
219 |
+
7. This requirement modifies the requirement in section 4 to
|
220 |
+
"keep intact all notices".
|
221 |
+
|
222 |
+
c) You must license the entire work, as a whole, under this
|
223 |
+
License to anyone who comes into possession of a copy. This
|
224 |
+
License will therefore apply, along with any applicable section 7
|
225 |
+
additional terms, to the whole of the work, and all its parts,
|
226 |
+
regardless of how they are packaged. This License gives no
|
227 |
+
permission to license the work in any other way, but it does not
|
228 |
+
invalidate such permission if you have separately received it.
|
229 |
+
|
230 |
+
d) If the work has interactive user interfaces, each must display
|
231 |
+
Appropriate Legal Notices; however, if the Program has interactive
|
232 |
+
interfaces that do not display Appropriate Legal Notices, your
|
233 |
+
work need not make them do so.
|
234 |
+
|
235 |
+
A compilation of a covered work with other separate and independent
|
236 |
+
works, which are not by their nature extensions of the covered work,
|
237 |
+
and which are not combined with it such as to form a larger program,
|
238 |
+
in or on a volume of a storage or distribution medium, is called an
|
239 |
+
"aggregate" if the compilation and its resulting copyright are not
|
240 |
+
used to limit the access or legal rights of the compilation's users
|
241 |
+
beyond what the individual works permit. Inclusion of a covered work
|
242 |
+
in an aggregate does not cause this License to apply to the other
|
243 |
+
parts of the aggregate.
|
244 |
+
|
245 |
+
6. Conveying Non-Source Forms.
|
246 |
+
|
247 |
+
You may convey a covered work in object code form under the terms
|
248 |
+
of sections 4 and 5, provided that you also convey the
|
249 |
+
machine-readable Corresponding Source under the terms of this License,
|
250 |
+
in one of these ways:
|
251 |
+
|
252 |
+
a) Convey the object code in, or embodied in, a physical product
|
253 |
+
(including a physical distribution medium), accompanied by the
|
254 |
+
Corresponding Source fixed on a durable physical medium
|
255 |
+
customarily used for software interchange.
|
256 |
+
|
257 |
+
b) Convey the object code in, or embodied in, a physical product
|
258 |
+
(including a physical distribution medium), accompanied by a
|
259 |
+
written offer, valid for at least three years and valid for as
|
260 |
+
long as you offer spare parts or customer support for that product
|
261 |
+
model, to give anyone who possesses the object code either (1) a
|
262 |
+
copy of the Corresponding Source for all the software in the
|
263 |
+
product that is covered by this License, on a durable physical
|
264 |
+
medium customarily used for software interchange, for a price no
|
265 |
+
more than your reasonable cost of physically performing this
|
266 |
+
conveying of source, or (2) access to copy the
|
267 |
+
Corresponding Source from a network server at no charge.
|
268 |
+
|
269 |
+
c) Convey individual copies of the object code with a copy of the
|
270 |
+
written offer to provide the Corresponding Source. This
|
271 |
+
alternative is allowed only occasionally and noncommercially, and
|
272 |
+
only if you received the object code with such an offer, in accord
|
273 |
+
with subsection 6b.
|
274 |
+
|
275 |
+
d) Convey the object code by offering access from a designated
|
276 |
+
place (gratis or for a charge), and offer equivalent access to the
|
277 |
+
Corresponding Source in the same way through the same place at no
|
278 |
+
further charge. You need not require recipients to copy the
|
279 |
+
Corresponding Source along with the object code. If the place to
|
280 |
+
copy the object code is a network server, the Corresponding Source
|
281 |
+
may be on a different server (operated by you or a third party)
|
282 |
+
that supports equivalent copying facilities, provided you maintain
|
283 |
+
clear directions next to the object code saying where to find the
|
284 |
+
Corresponding Source. Regardless of what server hosts the
|
285 |
+
Corresponding Source, you remain obligated to ensure that it is
|
286 |
+
available for as long as needed to satisfy these requirements.
|
287 |
+
|
288 |
+
e) Convey the object code using peer-to-peer transmission, provided
|
289 |
+
you inform other peers where the object code and Corresponding
|
290 |
+
Source of the work are being offered to the general public at no
|
291 |
+
charge under subsection 6d.
|
292 |
+
|
293 |
+
A separable portion of the object code, whose source code is excluded
|
294 |
+
from the Corresponding Source as a System Library, need not be
|
295 |
+
included in conveying the object code work.
|
296 |
+
|
297 |
+
A "User Product" is either (1) a "consumer product", which means any
|
298 |
+
tangible personal property which is normally used for personal, family,
|
299 |
+
or household purposes, or (2) anything designed or sold for incorporation
|
300 |
+
into a dwelling. In determining whether a product is a consumer product,
|
301 |
+
doubtful cases shall be resolved in favor of coverage. For a particular
|
302 |
+
product received by a particular user, "normally used" refers to a
|
303 |
+
typical or common use of that class of product, regardless of the status
|
304 |
+
of the particular user or of the way in which the particular user
|
305 |
+
actually uses, or expects or is expected to use, the product. A product
|
306 |
+
is a consumer product regardless of whether the product has substantial
|
307 |
+
commercial, industrial or non-consumer uses, unless such uses represent
|
308 |
+
the only significant mode of use of the product.
|
309 |
+
|
310 |
+
"Installation Information" for a User Product means any methods,
|
311 |
+
procedures, authorization keys, or other information required to install
|
312 |
+
and execute modified versions of a covered work in that User Product from
|
313 |
+
a modified version of its Corresponding Source. The information must
|
314 |
+
suffice to ensure that the continued functioning of the modified object
|
315 |
+
code is in no case prevented or interfered with solely because
|
316 |
+
modification has been made.
|
317 |
+
|
318 |
+
If you convey an object code work under this section in, or with, or
|
319 |
+
specifically for use in, a User Product, and the conveying occurs as
|
320 |
+
part of a transaction in which the right of possession and use of the
|
321 |
+
User Product is transferred to the recipient in perpetuity or for a
|
322 |
+
fixed term (regardless of how the transaction is characterized), the
|
323 |
+
Corresponding Source conveyed under this section must be accompanied
|
324 |
+
by the Installation Information. But this requirement does not apply
|
325 |
+
if neither you nor any third party retains the ability to install
|
326 |
+
modified object code on the User Product (for example, the work has
|
327 |
+
been installed in ROM).
|
328 |
+
|
329 |
+
The requirement to provide Installation Information does not include a
|
330 |
+
requirement to continue to provide support service, warranty, or updates
|
331 |
+
for a work that has been modified or installed by the recipient, or for
|
332 |
+
the User Product in which it has been modified or installed. Access to a
|
333 |
+
network may be denied when the modification itself materially and
|
334 |
+
adversely affects the operation of the network or violates the rules and
|
335 |
+
protocols for communication across the network.
|
336 |
+
|
337 |
+
Corresponding Source conveyed, and Installation Information provided,
|
338 |
+
in accord with this section must be in a format that is publicly
|
339 |
+
documented (and with an implementation available to the public in
|
340 |
+
source code form), and must require no special password or key for
|
341 |
+
unpacking, reading or copying.
|
342 |
+
|
343 |
+
7. Additional Terms.
|
344 |
+
|
345 |
+
"Additional permissions" are terms that supplement the terms of this
|
346 |
+
License by making exceptions from one or more of its conditions.
|
347 |
+
Additional permissions that are applicable to the entire Program shall
|
348 |
+
be treated as though they were included in this License, to the extent
|
349 |
+
that they are valid under applicable law. If additional permissions
|
350 |
+
apply only to part of the Program, that part may be used separately
|
351 |
+
under those permissions, but the entire Program remains governed by
|
352 |
+
this License without regard to the additional permissions.
|
353 |
+
|
354 |
+
When you convey a copy of a covered work, you may at your option
|
355 |
+
remove any additional permissions from that copy, or from any part of
|
356 |
+
it. (Additional permissions may be written to require their own
|
357 |
+
removal in certain cases when you modify the work.) You may place
|
358 |
+
additional permissions on material, added by you to a covered work,
|
359 |
+
for which you have or can give appropriate copyright permission.
|
360 |
+
|
361 |
+
Notwithstanding any other provision of this License, for material you
|
362 |
+
add to a covered work, you may (if authorized by the copyright holders of
|
363 |
+
that material) supplement the terms of this License with terms:
|
364 |
+
|
365 |
+
a) Disclaiming warranty or limiting liability differently from the
|
366 |
+
terms of sections 15 and 16 of this License; or
|
367 |
+
|
368 |
+
b) Requiring preservation of specified reasonable legal notices or
|
369 |
+
author attributions in that material or in the Appropriate Legal
|
370 |
+
Notices displayed by works containing it; or
|
371 |
+
|
372 |
+
c) Prohibiting misrepresentation of the origin of that material, or
|
373 |
+
requiring that modified versions of such material be marked in
|
374 |
+
reasonable ways as different from the original version; or
|
375 |
+
|
376 |
+
d) Limiting the use for publicity purposes of names of licensors or
|
377 |
+
authors of the material; or
|
378 |
+
|
379 |
+
e) Declining to grant rights under trademark law for use of some
|
380 |
+
trade names, trademarks, or service marks; or
|
381 |
+
|
382 |
+
f) Requiring indemnification of licensors and authors of that
|
383 |
+
material by anyone who conveys the material (or modified versions of
|
384 |
+
it) with contractual assumptions of liability to the recipient, for
|
385 |
+
any liability that these contractual assumptions directly impose on
|
386 |
+
those licensors and authors.
|
387 |
+
|
388 |
+
All other non-permissive additional terms are considered "further
|
389 |
+
restrictions" within the meaning of section 10. If the Program as you
|
390 |
+
received it, or any part of it, contains a notice stating that it is
|
391 |
+
governed by this License along with a term that is a further
|
392 |
+
restriction, you may remove that term. If a license document contains
|
393 |
+
a further restriction but permits relicensing or conveying under this
|
394 |
+
License, you may add to a covered work material governed by the terms
|
395 |
+
of that license document, provided that the further restriction does
|
396 |
+
not survive such relicensing or conveying.
|
397 |
+
|
398 |
+
If you add terms to a covered work in accord with this section, you
|
399 |
+
must place, in the relevant source files, a statement of the
|
400 |
+
additional terms that apply to those files, or a notice indicating
|
401 |
+
where to find the applicable terms.
|
402 |
+
|
403 |
+
Additional terms, permissive or non-permissive, may be stated in the
|
404 |
+
form of a separately written license, or stated as exceptions;
|
405 |
+
the above requirements apply either way.
|
406 |
+
|
407 |
+
8. Termination.
|
408 |
+
|
409 |
+
You may not propagate or modify a covered work except as expressly
|
410 |
+
provided under this License. Any attempt otherwise to propagate or
|
411 |
+
modify it is void, and will automatically terminate your rights under
|
412 |
+
this License (including any patent licenses granted under the third
|
413 |
+
paragraph of section 11).
|
414 |
+
|
415 |
+
However, if you cease all violation of this License, then your
|
416 |
+
license from a particular copyright holder is reinstated (a)
|
417 |
+
provisionally, unless and until the copyright holder explicitly and
|
418 |
+
finally terminates your license, and (b) permanently, if the copyright
|
419 |
+
holder fails to notify you of the violation by some reasonable means
|
420 |
+
prior to 60 days after the cessation.
|
421 |
+
|
422 |
+
Moreover, your license from a particular copyright holder is
|
423 |
+
reinstated permanently if the copyright holder notifies you of the
|
424 |
+
violation by some reasonable means, this is the first time you have
|
425 |
+
received notice of violation of this License (for any work) from that
|
426 |
+
copyright holder, and you cure the violation prior to 30 days after
|
427 |
+
your receipt of the notice.
|
428 |
+
|
429 |
+
Termination of your rights under this section does not terminate the
|
430 |
+
licenses of parties who have received copies or rights from you under
|
431 |
+
this License. If your rights have been terminated and not permanently
|
432 |
+
reinstated, you do not qualify to receive new licenses for the same
|
433 |
+
material under section 10.
|
434 |
+
|
435 |
+
9. Acceptance Not Required for Having Copies.
|
436 |
+
|
437 |
+
You are not required to accept this License in order to receive or
|
438 |
+
run a copy of the Program. Ancillary propagation of a covered work
|
439 |
+
occurring solely as a consequence of using peer-to-peer transmission
|
440 |
+
to receive a copy likewise does not require acceptance. However,
|
441 |
+
nothing other than this License grants you permission to propagate or
|
442 |
+
modify any covered work. These actions infringe copyright if you do
|
443 |
+
not accept this License. Therefore, by modifying or propagating a
|
444 |
+
covered work, you indicate your acceptance of this License to do so.
|
445 |
+
|
446 |
+
10. Automatic Licensing of Downstream Recipients.
|
447 |
+
|
448 |
+
Each time you convey a covered work, the recipient automatically
|
449 |
+
receives a license from the original licensors, to run, modify and
|
450 |
+
propagate that work, subject to this License. You are not responsible
|
451 |
+
for enforcing compliance by third parties with this License.
|
452 |
+
|
453 |
+
An "entity transaction" is a transaction transferring control of an
|
454 |
+
organization, or substantially all assets of one, or subdividing an
|
455 |
+
organization, or merging organizations. If propagation of a covered
|
456 |
+
work results from an entity transaction, each party to that
|
457 |
+
transaction who receives a copy of the work also receives whatever
|
458 |
+
licenses to the work the party's predecessor in interest had or could
|
459 |
+
give under the previous paragraph, plus a right to possession of the
|
460 |
+
Corresponding Source of the work from the predecessor in interest, if
|
461 |
+
the predecessor has it or can get it with reasonable efforts.
|
462 |
+
|
463 |
+
You may not impose any further restrictions on the exercise of the
|
464 |
+
rights granted or affirmed under this License. For example, you may
|
465 |
+
not impose a license fee, royalty, or other charge for exercise of
|
466 |
+
rights granted under this License, and you may not initiate litigation
|
467 |
+
(including a cross-claim or counterclaim in a lawsuit) alleging that
|
468 |
+
any patent claim is infringed by making, using, selling, offering for
|
469 |
+
sale, or importing the Program or any portion of it.
|
470 |
+
|
471 |
+
11. Patents.
|
472 |
+
|
473 |
+
A "contributor" is a copyright holder who authorizes use under this
|
474 |
+
License of the Program or a work on which the Program is based. The
|
475 |
+
work thus licensed is called the contributor's "contributor version".
|
476 |
+
|
477 |
+
A contributor's "essential patent claims" are all patent claims
|
478 |
+
owned or controlled by the contributor, whether already acquired or
|
479 |
+
hereafter acquired, that would be infringed by some manner, permitted
|
480 |
+
by this License, of making, using, or selling its contributor version,
|
481 |
+
but do not include claims that would be infringed only as a
|
482 |
+
consequence of further modification of the contributor version. For
|
483 |
+
purposes of this definition, "control" includes the right to grant
|
484 |
+
patent sublicenses in a manner consistent with the requirements of
|
485 |
+
this License.
|
486 |
+
|
487 |
+
Each contributor grants you a non-exclusive, worldwide, royalty-free
|
488 |
+
patent license under the contributor's essential patent claims, to
|
489 |
+
make, use, sell, offer for sale, import and otherwise run, modify and
|
490 |
+
propagate the contents of its contributor version.
|
491 |
+
|
492 |
+
In the following three paragraphs, a "patent license" is any express
|
493 |
+
agreement or commitment, however denominated, not to enforce a patent
|
494 |
+
(such as an express permission to practice a patent or covenant not to
|
495 |
+
sue for patent infringement). To "grant" such a patent license to a
|
496 |
+
party means to make such an agreement or commitment not to enforce a
|
497 |
+
patent against the party.
|
498 |
+
|
499 |
+
If you convey a covered work, knowingly relying on a patent license,
|
500 |
+
and the Corresponding Source of the work is not available for anyone
|
501 |
+
to copy, free of charge and under the terms of this License, through a
|
502 |
+
publicly available network server or other readily accessible means,
|
503 |
+
then you must either (1) cause the Corresponding Source to be so
|
504 |
+
available, or (2) arrange to deprive yourself of the benefit of the
|
505 |
+
patent license for this particular work, or (3) arrange, in a manner
|
506 |
+
consistent with the requirements of this License, to extend the patent
|
507 |
+
license to downstream recipients. "Knowingly relying" means you have
|
508 |
+
actual knowledge that, but for the patent license, your conveying the
|
509 |
+
covered work in a country, or your recipient's use of the covered work
|
510 |
+
in a country, would infringe one or more identifiable patents in that
|
511 |
+
country that you have reason to believe are valid.
|
512 |
+
|
513 |
+
If, pursuant to or in connection with a single transaction or
|
514 |
+
arrangement, you convey, or propagate by procuring conveyance of, a
|
515 |
+
covered work, and grant a patent license to some of the parties
|
516 |
+
receiving the covered work authorizing them to use, propagate, modify
|
517 |
+
or convey a specific copy of the covered work, then the patent license
|
518 |
+
you grant is automatically extended to all recipients of the covered
|
519 |
+
work and works based on it.
|
520 |
+
|
521 |
+
A patent license is "discriminatory" if it does not include within
|
522 |
+
the scope of its coverage, prohibits the exercise of, or is
|
523 |
+
conditioned on the non-exercise of one or more of the rights that are
|
524 |
+
specifically granted under this License. You may not convey a covered
|
525 |
+
work if you are a party to an arrangement with a third party that is
|
526 |
+
in the business of distributing software, under which you make payment
|
527 |
+
to the third party based on the extent of your activity of conveying
|
528 |
+
the work, and under which the third party grants, to any of the
|
529 |
+
parties who would receive the covered work from you, a discriminatory
|
530 |
+
patent license (a) in connection with copies of the covered work
|
531 |
+
conveyed by you (or copies made from those copies), or (b) primarily
|
532 |
+
for and in connection with specific products or compilations that
|
533 |
+
contain the covered work, unless you entered into that arrangement,
|
534 |
+
or that patent license was granted, prior to 28 March 2007.
|
535 |
+
|
536 |
+
Nothing in this License shall be construed as excluding or limiting
|
537 |
+
any implied license or other defenses to infringement that may
|
538 |
+
otherwise be available to you under applicable patent law.
|
539 |
+
|
540 |
+
12. No Surrender of Others' Freedom.
|
541 |
+
|
542 |
+
If conditions are imposed on you (whether by court order, agreement or
|
543 |
+
otherwise) that contradict the conditions of this License, they do not
|
544 |
+
excuse you from the conditions of this License. If you cannot convey a
|
545 |
+
covered work so as to satisfy simultaneously your obligations under this
|
546 |
+
License and any other pertinent obligations, then as a consequence you may
|
547 |
+
not convey it at all. For example, if you agree to terms that obligate you
|
548 |
+
to collect a royalty for further conveying from those to whom you convey
|
549 |
+
the Program, the only way you could satisfy both those terms and this
|
550 |
+
License would be to refrain entirely from conveying the Program.
|
551 |
+
|
552 |
+
13. Use with the GNU Affero General Public License.
|
553 |
+
|
554 |
+
Notwithstanding any other provision of this License, you have
|
555 |
+
permission to link or combine any covered work with a work licensed
|
556 |
+
under version 3 of the GNU Affero General Public License into a single
|
557 |
+
combined work, and to convey the resulting work. The terms of this
|
558 |
+
License will continue to apply to the part which is the covered work,
|
559 |
+
but the special requirements of the GNU Affero General Public License,
|
560 |
+
section 13, concerning interaction through a network will apply to the
|
561 |
+
combination as such.
|
562 |
+
|
563 |
+
14. Revised Versions of this License.
|
564 |
+
|
565 |
+
The Free Software Foundation may publish revised and/or new versions of
|
566 |
+
the GNU General Public License from time to time. Such new versions will
|
567 |
+
be similar in spirit to the present version, but may differ in detail to
|
568 |
+
address new problems or concerns.
|
569 |
+
|
570 |
+
Each version is given a distinguishing version number. If the
|
571 |
+
Program specifies that a certain numbered version of the GNU General
|
572 |
+
Public License "or any later version" applies to it, you have the
|
573 |
+
option of following the terms and conditions either of that numbered
|
574 |
+
version or of any later version published by the Free Software
|
575 |
+
Foundation. If the Program does not specify a version number of the
|
576 |
+
GNU General Public License, you may choose any version ever published
|
577 |
+
by the Free Software Foundation.
|
578 |
+
|
579 |
+
If the Program specifies that a proxy can decide which future
|
580 |
+
versions of the GNU General Public License can be used, that proxy's
|
581 |
+
public statement of acceptance of a version permanently authorizes you
|
582 |
+
to choose that version for the Program.
|
583 |
+
|
584 |
+
Later license versions may give you additional or different
|
585 |
+
permissions. However, no additional obligations are imposed on any
|
586 |
+
author or copyright holder as a result of your choosing to follow a
|
587 |
+
later version.
|
588 |
+
|
589 |
+
15. Disclaimer of Warranty.
|
590 |
+
|
591 |
+
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
|
592 |
+
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
|
593 |
+
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
|
594 |
+
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
|
595 |
+
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
596 |
+
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
|
597 |
+
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
|
598 |
+
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
|
599 |
+
|
600 |
+
16. Limitation of Liability.
|
601 |
+
|
602 |
+
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
|
603 |
+
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
|
604 |
+
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
|
605 |
+
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
|
606 |
+
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
|
607 |
+
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
|
608 |
+
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
|
609 |
+
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
|
610 |
+
SUCH DAMAGES.
|
611 |
+
|
612 |
+
17. Interpretation of Sections 15 and 16.
|
613 |
+
|
614 |
+
If the disclaimer of warranty and limitation of liability provided
|
615 |
+
above cannot be given local legal effect according to their terms,
|
616 |
+
reviewing courts shall apply local law that most closely approximates
|
617 |
+
an absolute waiver of all civil liability in connection with the
|
618 |
+
Program, unless a warranty or assumption of liability accompanies a
|
619 |
+
copy of the Program in return for a fee.
|
620 |
+
|
621 |
+
END OF TERMS AND CONDITIONS
|
622 |
+
|
623 |
+
How to Apply These Terms to Your New Programs
|
624 |
+
|
625 |
+
If you develop a new program, and you want it to be of the greatest
|
626 |
+
possible use to the public, the best way to achieve this is to make it
|
627 |
+
free software which everyone can redistribute and change under these terms.
|
628 |
+
|
629 |
+
To do so, attach the following notices to the program. It is safest
|
630 |
+
to attach them to the start of each source file to most effectively
|
631 |
+
state the exclusion of warranty; and each file should have at least
|
632 |
+
the "copyright" line and a pointer to where the full notice is found.
|
633 |
+
|
634 |
+
<one line to give the program's name and a brief idea of what it does.>
|
635 |
+
Copyright (C) <year> <name of author>
|
636 |
+
|
637 |
+
This program is free software: you can redistribute it and/or modify
|
638 |
+
it under the terms of the GNU General Public License as published by
|
639 |
+
the Free Software Foundation, either version 3 of the License, or
|
640 |
+
(at your option) any later version.
|
641 |
+
|
642 |
+
This program is distributed in the hope that it will be useful,
|
643 |
+
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
644 |
+
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
645 |
+
GNU General Public License for more details.
|
646 |
+
|
647 |
+
You should have received a copy of the GNU General Public License
|
648 |
+
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
649 |
+
|
650 |
+
Also add information on how to contact you by electronic and paper mail.
|
651 |
+
|
652 |
+
If the program does terminal interaction, make it output a short
|
653 |
+
notice like this when it starts in an interactive mode:
|
654 |
+
|
655 |
+
<program> Copyright (C) <year> <name of author>
|
656 |
+
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
|
657 |
+
This is free software, and you are welcome to redistribute it
|
658 |
+
under certain conditions; type `show c' for details.
|
659 |
+
|
660 |
+
The hypothetical commands `show w' and `show c' should show the appropriate
|
661 |
+
parts of the General Public License. Of course, your program's commands
|
662 |
+
might be different; for a GUI interface, you would use an "about box".
|
663 |
+
|
664 |
+
You should also get your employer (if you work as a programmer) or school,
|
665 |
+
if any, to sign a "copyright disclaimer" for the program, if necessary.
|
666 |
+
For more information on this, and how to apply and follow the GNU GPL, see
|
667 |
+
<https://www.gnu.org/licenses/>.
|
668 |
+
|
669 |
+
The GNU General Public License does not permit incorporating your program
|
670 |
+
into proprietary programs. If your program is a subroutine library, you
|
671 |
+
may consider it more useful to permit linking proprietary applications with
|
672 |
+
the library. If this is what you want to do, use the GNU Lesser General
|
673 |
+
Public License instead of this License. But first, please read
|
674 |
+
<https://www.gnu.org/licenses/why-not-lgpl.html>.
|
Tensor go assignment .mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0ceb2e4fae8a029004115a6e9e2f21a6f9d13541589c3347bfeb86591ea207a8
|
3 |
+
size 22437942
|
cfg/baseline/r50-csp.yaml
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# parameters
|
2 |
+
nc: 80 # number of classes
|
3 |
+
depth_multiple: 1.0 # model depth multiple
|
4 |
+
width_multiple: 1.0 # layer channel multiple
|
5 |
+
|
6 |
+
# anchors
|
7 |
+
anchors:
|
8 |
+
- [12,16, 19,36, 40,28] # P3/8
|
9 |
+
- [36,75, 76,55, 72,146] # P4/16
|
10 |
+
- [142,110, 192,243, 459,401] # P5/32
|
11 |
+
|
12 |
+
# CSP-ResNet backbone
|
13 |
+
backbone:
|
14 |
+
# [from, number, module, args]
|
15 |
+
[[-1, 1, Stem, [128]], # 0-P1/2
|
16 |
+
[-1, 3, ResCSPC, [128]],
|
17 |
+
[-1, 1, Conv, [256, 3, 2]], # 2-P3/8
|
18 |
+
[-1, 4, ResCSPC, [256]],
|
19 |
+
[-1, 1, Conv, [512, 3, 2]], # 4-P3/8
|
20 |
+
[-1, 6, ResCSPC, [512]],
|
21 |
+
[-1, 1, Conv, [1024, 3, 2]], # 6-P3/8
|
22 |
+
[-1, 3, ResCSPC, [1024]], # 7
|
23 |
+
]
|
24 |
+
|
25 |
+
# CSP-Res-PAN head
|
26 |
+
head:
|
27 |
+
[[-1, 1, SPPCSPC, [512]], # 8
|
28 |
+
[-1, 1, Conv, [256, 1, 1]],
|
29 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
30 |
+
[5, 1, Conv, [256, 1, 1]], # route backbone P4
|
31 |
+
[[-1, -2], 1, Concat, [1]],
|
32 |
+
[-1, 2, ResCSPB, [256]], # 13
|
33 |
+
[-1, 1, Conv, [128, 1, 1]],
|
34 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
35 |
+
[3, 1, Conv, [128, 1, 1]], # route backbone P3
|
36 |
+
[[-1, -2], 1, Concat, [1]],
|
37 |
+
[-1, 2, ResCSPB, [128]], # 18
|
38 |
+
[-1, 1, Conv, [256, 3, 1]],
|
39 |
+
[-2, 1, Conv, [256, 3, 2]],
|
40 |
+
[[-1, 13], 1, Concat, [1]], # cat
|
41 |
+
[-1, 2, ResCSPB, [256]], # 22
|
42 |
+
[-1, 1, Conv, [512, 3, 1]],
|
43 |
+
[-2, 1, Conv, [512, 3, 2]],
|
44 |
+
[[-1, 8], 1, Concat, [1]], # cat
|
45 |
+
[-1, 2, ResCSPB, [512]], # 26
|
46 |
+
[-1, 1, Conv, [1024, 3, 1]],
|
47 |
+
|
48 |
+
[[19,23,27], 1, IDetect, [nc, anchors]], # Detect(P3, P4, P5)
|
49 |
+
]
|
cfg/baseline/x50-csp.yaml
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# parameters
|
2 |
+
nc: 80 # number of classes
|
3 |
+
depth_multiple: 1.0 # model depth multiple
|
4 |
+
width_multiple: 1.0 # layer channel multiple
|
5 |
+
|
6 |
+
# anchors
|
7 |
+
anchors:
|
8 |
+
- [12,16, 19,36, 40,28] # P3/8
|
9 |
+
- [36,75, 76,55, 72,146] # P4/16
|
10 |
+
- [142,110, 192,243, 459,401] # P5/32
|
11 |
+
|
12 |
+
# CSP-ResNeXt backbone
|
13 |
+
backbone:
|
14 |
+
# [from, number, module, args]
|
15 |
+
[[-1, 1, Stem, [128]], # 0-P1/2
|
16 |
+
[-1, 3, ResXCSPC, [128]],
|
17 |
+
[-1, 1, Conv, [256, 3, 2]], # 2-P3/8
|
18 |
+
[-1, 4, ResXCSPC, [256]],
|
19 |
+
[-1, 1, Conv, [512, 3, 2]], # 4-P3/8
|
20 |
+
[-1, 6, ResXCSPC, [512]],
|
21 |
+
[-1, 1, Conv, [1024, 3, 2]], # 6-P3/8
|
22 |
+
[-1, 3, ResXCSPC, [1024]], # 7
|
23 |
+
]
|
24 |
+
|
25 |
+
# CSP-ResX-PAN head
|
26 |
+
head:
|
27 |
+
[[-1, 1, SPPCSPC, [512]], # 8
|
28 |
+
[-1, 1, Conv, [256, 1, 1]],
|
29 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
30 |
+
[5, 1, Conv, [256, 1, 1]], # route backbone P4
|
31 |
+
[[-1, -2], 1, Concat, [1]],
|
32 |
+
[-1, 2, ResXCSPB, [256]], # 13
|
33 |
+
[-1, 1, Conv, [128, 1, 1]],
|
34 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
35 |
+
[3, 1, Conv, [128, 1, 1]], # route backbone P3
|
36 |
+
[[-1, -2], 1, Concat, [1]],
|
37 |
+
[-1, 2, ResXCSPB, [128]], # 18
|
38 |
+
[-1, 1, Conv, [256, 3, 1]],
|
39 |
+
[-2, 1, Conv, [256, 3, 2]],
|
40 |
+
[[-1, 13], 1, Concat, [1]], # cat
|
41 |
+
[-1, 2, ResXCSPB, [256]], # 22
|
42 |
+
[-1, 1, Conv, [512, 3, 1]],
|
43 |
+
[-2, 1, Conv, [512, 3, 2]],
|
44 |
+
[[-1, 8], 1, Concat, [1]], # cat
|
45 |
+
[-1, 2, ResXCSPB, [512]], # 26
|
46 |
+
[-1, 1, Conv, [1024, 3, 1]],
|
47 |
+
|
48 |
+
[[19,23,27], 1, IDetect, [nc, anchors]], # Detect(P3, P4, P5)
|
49 |
+
]
|
cfg/baseline/yolor-csp-x.yaml
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# parameters
|
2 |
+
nc: 80 # number of classes
|
3 |
+
depth_multiple: 1.33 # model depth multiple
|
4 |
+
width_multiple: 1.25 # layer channel multiple
|
5 |
+
|
6 |
+
# anchors
|
7 |
+
anchors:
|
8 |
+
- [12,16, 19,36, 40,28] # P3/8
|
9 |
+
- [36,75, 76,55, 72,146] # P4/16
|
10 |
+
- [142,110, 192,243, 459,401] # P5/32
|
11 |
+
|
12 |
+
# CSP-Darknet backbone
|
13 |
+
backbone:
|
14 |
+
# [from, number, module, args]
|
15 |
+
[[-1, 1, Conv, [32, 3, 1]], # 0
|
16 |
+
[-1, 1, Conv, [64, 3, 2]], # 1-P1/2
|
17 |
+
[-1, 1, Bottleneck, [64]],
|
18 |
+
[-1, 1, Conv, [128, 3, 2]], # 3-P2/4
|
19 |
+
[-1, 2, BottleneckCSPC, [128]],
|
20 |
+
[-1, 1, Conv, [256, 3, 2]], # 5-P3/8
|
21 |
+
[-1, 8, BottleneckCSPC, [256]],
|
22 |
+
[-1, 1, Conv, [512, 3, 2]], # 7-P4/16
|
23 |
+
[-1, 8, BottleneckCSPC, [512]],
|
24 |
+
[-1, 1, Conv, [1024, 3, 2]], # 9-P5/32
|
25 |
+
[-1, 4, BottleneckCSPC, [1024]], # 10
|
26 |
+
]
|
27 |
+
|
28 |
+
# CSP-Dark-PAN head
|
29 |
+
head:
|
30 |
+
[[-1, 1, SPPCSPC, [512]], # 11
|
31 |
+
[-1, 1, Conv, [256, 1, 1]],
|
32 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
33 |
+
[8, 1, Conv, [256, 1, 1]], # route backbone P4
|
34 |
+
[[-1, -2], 1, Concat, [1]],
|
35 |
+
[-1, 2, BottleneckCSPB, [256]], # 16
|
36 |
+
[-1, 1, Conv, [128, 1, 1]],
|
37 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
38 |
+
[6, 1, Conv, [128, 1, 1]], # route backbone P3
|
39 |
+
[[-1, -2], 1, Concat, [1]],
|
40 |
+
[-1, 2, BottleneckCSPB, [128]], # 21
|
41 |
+
[-1, 1, Conv, [256, 3, 1]],
|
42 |
+
[-2, 1, Conv, [256, 3, 2]],
|
43 |
+
[[-1, 16], 1, Concat, [1]], # cat
|
44 |
+
[-1, 2, BottleneckCSPB, [256]], # 25
|
45 |
+
[-1, 1, Conv, [512, 3, 1]],
|
46 |
+
[-2, 1, Conv, [512, 3, 2]],
|
47 |
+
[[-1, 11], 1, Concat, [1]], # cat
|
48 |
+
[-1, 2, BottleneckCSPB, [512]], # 29
|
49 |
+
[-1, 1, Conv, [1024, 3, 1]],
|
50 |
+
|
51 |
+
[[22,26,30], 1, IDetect, [nc, anchors]], # Detect(P3, P4, P5)
|
52 |
+
]
|
cfg/baseline/yolor-csp.yaml
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# parameters
|
2 |
+
nc: 80 # number of classes
|
3 |
+
depth_multiple: 1.0 # model depth multiple
|
4 |
+
width_multiple: 1.0 # layer channel multiple
|
5 |
+
|
6 |
+
# anchors
|
7 |
+
anchors:
|
8 |
+
- [12,16, 19,36, 40,28] # P3/8
|
9 |
+
- [36,75, 76,55, 72,146] # P4/16
|
10 |
+
- [142,110, 192,243, 459,401] # P5/32
|
11 |
+
|
12 |
+
# CSP-Darknet backbone
|
13 |
+
backbone:
|
14 |
+
# [from, number, module, args]
|
15 |
+
[[-1, 1, Conv, [32, 3, 1]], # 0
|
16 |
+
[-1, 1, Conv, [64, 3, 2]], # 1-P1/2
|
17 |
+
[-1, 1, Bottleneck, [64]],
|
18 |
+
[-1, 1, Conv, [128, 3, 2]], # 3-P2/4
|
19 |
+
[-1, 2, BottleneckCSPC, [128]],
|
20 |
+
[-1, 1, Conv, [256, 3, 2]], # 5-P3/8
|
21 |
+
[-1, 8, BottleneckCSPC, [256]],
|
22 |
+
[-1, 1, Conv, [512, 3, 2]], # 7-P4/16
|
23 |
+
[-1, 8, BottleneckCSPC, [512]],
|
24 |
+
[-1, 1, Conv, [1024, 3, 2]], # 9-P5/32
|
25 |
+
[-1, 4, BottleneckCSPC, [1024]], # 10
|
26 |
+
]
|
27 |
+
|
28 |
+
# CSP-Dark-PAN head
|
29 |
+
head:
|
30 |
+
[[-1, 1, SPPCSPC, [512]], # 11
|
31 |
+
[-1, 1, Conv, [256, 1, 1]],
|
32 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
33 |
+
[8, 1, Conv, [256, 1, 1]], # route backbone P4
|
34 |
+
[[-1, -2], 1, Concat, [1]],
|
35 |
+
[-1, 2, BottleneckCSPB, [256]], # 16
|
36 |
+
[-1, 1, Conv, [128, 1, 1]],
|
37 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
38 |
+
[6, 1, Conv, [128, 1, 1]], # route backbone P3
|
39 |
+
[[-1, -2], 1, Concat, [1]],
|
40 |
+
[-1, 2, BottleneckCSPB, [128]], # 21
|
41 |
+
[-1, 1, Conv, [256, 3, 1]],
|
42 |
+
[-2, 1, Conv, [256, 3, 2]],
|
43 |
+
[[-1, 16], 1, Concat, [1]], # cat
|
44 |
+
[-1, 2, BottleneckCSPB, [256]], # 25
|
45 |
+
[-1, 1, Conv, [512, 3, 1]],
|
46 |
+
[-2, 1, Conv, [512, 3, 2]],
|
47 |
+
[[-1, 11], 1, Concat, [1]], # cat
|
48 |
+
[-1, 2, BottleneckCSPB, [512]], # 29
|
49 |
+
[-1, 1, Conv, [1024, 3, 1]],
|
50 |
+
|
51 |
+
[[22,26,30], 1, IDetect, [nc, anchors]], # Detect(P3, P4, P5)
|
52 |
+
]
|
cfg/baseline/yolor-d6.yaml
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# parameters
|
2 |
+
nc: 80 # number of classes
|
3 |
+
depth_multiple: 1.0 # expand model depth
|
4 |
+
width_multiple: 1.25 # expand layer channels
|
5 |
+
|
6 |
+
# anchors
|
7 |
+
anchors:
|
8 |
+
- [ 19,27, 44,40, 38,94 ] # P3/8
|
9 |
+
- [ 96,68, 86,152, 180,137 ] # P4/16
|
10 |
+
- [ 140,301, 303,264, 238,542 ] # P5/32
|
11 |
+
- [ 436,615, 739,380, 925,792 ] # P6/64
|
12 |
+
|
13 |
+
# CSP-Darknet backbone
|
14 |
+
backbone:
|
15 |
+
# [from, number, module, args]
|
16 |
+
[[-1, 1, ReOrg, []], # 0
|
17 |
+
[-1, 1, Conv, [64, 3, 1]], # 1-P1/2
|
18 |
+
[-1, 1, DownC, [128]], # 2-P2/4
|
19 |
+
[-1, 3, BottleneckCSPA, [128]],
|
20 |
+
[-1, 1, DownC, [256]], # 4-P3/8
|
21 |
+
[-1, 15, BottleneckCSPA, [256]],
|
22 |
+
[-1, 1, DownC, [512]], # 6-P4/16
|
23 |
+
[-1, 15, BottleneckCSPA, [512]],
|
24 |
+
[-1, 1, DownC, [768]], # 8-P5/32
|
25 |
+
[-1, 7, BottleneckCSPA, [768]],
|
26 |
+
[-1, 1, DownC, [1024]], # 10-P6/64
|
27 |
+
[-1, 7, BottleneckCSPA, [1024]], # 11
|
28 |
+
]
|
29 |
+
|
30 |
+
# CSP-Dark-PAN head
|
31 |
+
head:
|
32 |
+
[[-1, 1, SPPCSPC, [512]], # 12
|
33 |
+
[-1, 1, Conv, [384, 1, 1]],
|
34 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
35 |
+
[-6, 1, Conv, [384, 1, 1]], # route backbone P5
|
36 |
+
[[-1, -2], 1, Concat, [1]],
|
37 |
+
[-1, 3, BottleneckCSPB, [384]], # 17
|
38 |
+
[-1, 1, Conv, [256, 1, 1]],
|
39 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
40 |
+
[-13, 1, Conv, [256, 1, 1]], # route backbone P4
|
41 |
+
[[-1, -2], 1, Concat, [1]],
|
42 |
+
[-1, 3, BottleneckCSPB, [256]], # 22
|
43 |
+
[-1, 1, Conv, [128, 1, 1]],
|
44 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
45 |
+
[-20, 1, Conv, [128, 1, 1]], # route backbone P3
|
46 |
+
[[-1, -2], 1, Concat, [1]],
|
47 |
+
[-1, 3, BottleneckCSPB, [128]], # 27
|
48 |
+
[-1, 1, Conv, [256, 3, 1]],
|
49 |
+
[-2, 1, DownC, [256]],
|
50 |
+
[[-1, 22], 1, Concat, [1]], # cat
|
51 |
+
[-1, 3, BottleneckCSPB, [256]], # 31
|
52 |
+
[-1, 1, Conv, [512, 3, 1]],
|
53 |
+
[-2, 1, DownC, [384]],
|
54 |
+
[[-1, 17], 1, Concat, [1]], # cat
|
55 |
+
[-1, 3, BottleneckCSPB, [384]], # 35
|
56 |
+
[-1, 1, Conv, [768, 3, 1]],
|
57 |
+
[-2, 1, DownC, [512]],
|
58 |
+
[[-1, 12], 1, Concat, [1]], # cat
|
59 |
+
[-1, 3, BottleneckCSPB, [512]], # 39
|
60 |
+
[-1, 1, Conv, [1024, 3, 1]],
|
61 |
+
|
62 |
+
[[28,32,36,40], 1, IDetect, [nc, anchors]], # Detect(P3, P4, P5, P6)
|
63 |
+
]
|
cfg/baseline/yolor-e6.yaml
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# parameters
|
2 |
+
nc: 80 # number of classes
|
3 |
+
depth_multiple: 1.0 # expand model depth
|
4 |
+
width_multiple: 1.25 # expand layer channels
|
5 |
+
|
6 |
+
# anchors
|
7 |
+
anchors:
|
8 |
+
- [ 19,27, 44,40, 38,94 ] # P3/8
|
9 |
+
- [ 96,68, 86,152, 180,137 ] # P4/16
|
10 |
+
- [ 140,301, 303,264, 238,542 ] # P5/32
|
11 |
+
- [ 436,615, 739,380, 925,792 ] # P6/64
|
12 |
+
|
13 |
+
# CSP-Darknet backbone
|
14 |
+
backbone:
|
15 |
+
# [from, number, module, args]
|
16 |
+
[[-1, 1, ReOrg, []], # 0
|
17 |
+
[-1, 1, Conv, [64, 3, 1]], # 1-P1/2
|
18 |
+
[-1, 1, DownC, [128]], # 2-P2/4
|
19 |
+
[-1, 3, BottleneckCSPA, [128]],
|
20 |
+
[-1, 1, DownC, [256]], # 4-P3/8
|
21 |
+
[-1, 7, BottleneckCSPA, [256]],
|
22 |
+
[-1, 1, DownC, [512]], # 6-P4/16
|
23 |
+
[-1, 7, BottleneckCSPA, [512]],
|
24 |
+
[-1, 1, DownC, [768]], # 8-P5/32
|
25 |
+
[-1, 3, BottleneckCSPA, [768]],
|
26 |
+
[-1, 1, DownC, [1024]], # 10-P6/64
|
27 |
+
[-1, 3, BottleneckCSPA, [1024]], # 11
|
28 |
+
]
|
29 |
+
|
30 |
+
# CSP-Dark-PAN head
|
31 |
+
head:
|
32 |
+
[[-1, 1, SPPCSPC, [512]], # 12
|
33 |
+
[-1, 1, Conv, [384, 1, 1]],
|
34 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
35 |
+
[-6, 1, Conv, [384, 1, 1]], # route backbone P5
|
36 |
+
[[-1, -2], 1, Concat, [1]],
|
37 |
+
[-1, 3, BottleneckCSPB, [384]], # 17
|
38 |
+
[-1, 1, Conv, [256, 1, 1]],
|
39 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
40 |
+
[-13, 1, Conv, [256, 1, 1]], # route backbone P4
|
41 |
+
[[-1, -2], 1, Concat, [1]],
|
42 |
+
[-1, 3, BottleneckCSPB, [256]], # 22
|
43 |
+
[-1, 1, Conv, [128, 1, 1]],
|
44 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
45 |
+
[-20, 1, Conv, [128, 1, 1]], # route backbone P3
|
46 |
+
[[-1, -2], 1, Concat, [1]],
|
47 |
+
[-1, 3, BottleneckCSPB, [128]], # 27
|
48 |
+
[-1, 1, Conv, [256, 3, 1]],
|
49 |
+
[-2, 1, DownC, [256]],
|
50 |
+
[[-1, 22], 1, Concat, [1]], # cat
|
51 |
+
[-1, 3, BottleneckCSPB, [256]], # 31
|
52 |
+
[-1, 1, Conv, [512, 3, 1]],
|
53 |
+
[-2, 1, DownC, [384]],
|
54 |
+
[[-1, 17], 1, Concat, [1]], # cat
|
55 |
+
[-1, 3, BottleneckCSPB, [384]], # 35
|
56 |
+
[-1, 1, Conv, [768, 3, 1]],
|
57 |
+
[-2, 1, DownC, [512]],
|
58 |
+
[[-1, 12], 1, Concat, [1]], # cat
|
59 |
+
[-1, 3, BottleneckCSPB, [512]], # 39
|
60 |
+
[-1, 1, Conv, [1024, 3, 1]],
|
61 |
+
|
62 |
+
[[28,32,36,40], 1, IDetect, [nc, anchors]], # Detect(P3, P4, P5, P6)
|
63 |
+
]
|
cfg/baseline/yolor-p6.yaml
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# parameters
|
2 |
+
nc: 80 # number of classes
|
3 |
+
depth_multiple: 1.0 # expand model depth
|
4 |
+
width_multiple: 1.0 # expand layer channels
|
5 |
+
|
6 |
+
# anchors
|
7 |
+
anchors:
|
8 |
+
- [ 19,27, 44,40, 38,94 ] # P3/8
|
9 |
+
- [ 96,68, 86,152, 180,137 ] # P4/16
|
10 |
+
- [ 140,301, 303,264, 238,542 ] # P5/32
|
11 |
+
- [ 436,615, 739,380, 925,792 ] # P6/64
|
12 |
+
|
13 |
+
# CSP-Darknet backbone
|
14 |
+
backbone:
|
15 |
+
# [from, number, module, args]
|
16 |
+
[[-1, 1, ReOrg, []], # 0
|
17 |
+
[-1, 1, Conv, [64, 3, 1]], # 1-P1/2
|
18 |
+
[-1, 1, Conv, [128, 3, 2]], # 2-P2/4
|
19 |
+
[-1, 3, BottleneckCSPA, [128]],
|
20 |
+
[-1, 1, Conv, [256, 3, 2]], # 4-P3/8
|
21 |
+
[-1, 7, BottleneckCSPA, [256]],
|
22 |
+
[-1, 1, Conv, [384, 3, 2]], # 6-P4/16
|
23 |
+
[-1, 7, BottleneckCSPA, [384]],
|
24 |
+
[-1, 1, Conv, [512, 3, 2]], # 8-P5/32
|
25 |
+
[-1, 3, BottleneckCSPA, [512]],
|
26 |
+
[-1, 1, Conv, [640, 3, 2]], # 10-P6/64
|
27 |
+
[-1, 3, BottleneckCSPA, [640]], # 11
|
28 |
+
]
|
29 |
+
|
30 |
+
# CSP-Dark-PAN head
|
31 |
+
head:
|
32 |
+
[[-1, 1, SPPCSPC, [320]], # 12
|
33 |
+
[-1, 1, Conv, [256, 1, 1]],
|
34 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
35 |
+
[-6, 1, Conv, [256, 1, 1]], # route backbone P5
|
36 |
+
[[-1, -2], 1, Concat, [1]],
|
37 |
+
[-1, 3, BottleneckCSPB, [256]], # 17
|
38 |
+
[-1, 1, Conv, [192, 1, 1]],
|
39 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
40 |
+
[-13, 1, Conv, [192, 1, 1]], # route backbone P4
|
41 |
+
[[-1, -2], 1, Concat, [1]],
|
42 |
+
[-1, 3, BottleneckCSPB, [192]], # 22
|
43 |
+
[-1, 1, Conv, [128, 1, 1]],
|
44 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
45 |
+
[-20, 1, Conv, [128, 1, 1]], # route backbone P3
|
46 |
+
[[-1, -2], 1, Concat, [1]],
|
47 |
+
[-1, 3, BottleneckCSPB, [128]], # 27
|
48 |
+
[-1, 1, Conv, [256, 3, 1]],
|
49 |
+
[-2, 1, Conv, [192, 3, 2]],
|
50 |
+
[[-1, 22], 1, Concat, [1]], # cat
|
51 |
+
[-1, 3, BottleneckCSPB, [192]], # 31
|
52 |
+
[-1, 1, Conv, [384, 3, 1]],
|
53 |
+
[-2, 1, Conv, [256, 3, 2]],
|
54 |
+
[[-1, 17], 1, Concat, [1]], # cat
|
55 |
+
[-1, 3, BottleneckCSPB, [256]], # 35
|
56 |
+
[-1, 1, Conv, [512, 3, 1]],
|
57 |
+
[-2, 1, Conv, [320, 3, 2]],
|
58 |
+
[[-1, 12], 1, Concat, [1]], # cat
|
59 |
+
[-1, 3, BottleneckCSPB, [320]], # 39
|
60 |
+
[-1, 1, Conv, [640, 3, 1]],
|
61 |
+
|
62 |
+
[[28,32,36,40], 1, IDetect, [nc, anchors]], # Detect(P3, P4, P5, P6)
|
63 |
+
]
|
cfg/baseline/yolor-w6.yaml
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# parameters
|
2 |
+
nc: 80 # number of classes
|
3 |
+
depth_multiple: 1.0 # expand model depth
|
4 |
+
width_multiple: 1.0 # expand layer channels
|
5 |
+
|
6 |
+
# anchors
|
7 |
+
anchors:
|
8 |
+
- [ 19,27, 44,40, 38,94 ] # P3/8
|
9 |
+
- [ 96,68, 86,152, 180,137 ] # P4/16
|
10 |
+
- [ 140,301, 303,264, 238,542 ] # P5/32
|
11 |
+
- [ 436,615, 739,380, 925,792 ] # P6/64
|
12 |
+
|
13 |
+
# CSP-Darknet backbone
|
14 |
+
backbone:
|
15 |
+
# [from, number, module, args]
|
16 |
+
[[-1, 1, ReOrg, []], # 0
|
17 |
+
[-1, 1, Conv, [64, 3, 1]], # 1-P1/2
|
18 |
+
[-1, 1, Conv, [128, 3, 2]], # 2-P2/4
|
19 |
+
[-1, 3, BottleneckCSPA, [128]],
|
20 |
+
[-1, 1, Conv, [256, 3, 2]], # 4-P3/8
|
21 |
+
[-1, 7, BottleneckCSPA, [256]],
|
22 |
+
[-1, 1, Conv, [512, 3, 2]], # 6-P4/16
|
23 |
+
[-1, 7, BottleneckCSPA, [512]],
|
24 |
+
[-1, 1, Conv, [768, 3, 2]], # 8-P5/32
|
25 |
+
[-1, 3, BottleneckCSPA, [768]],
|
26 |
+
[-1, 1, Conv, [1024, 3, 2]], # 10-P6/64
|
27 |
+
[-1, 3, BottleneckCSPA, [1024]], # 11
|
28 |
+
]
|
29 |
+
|
30 |
+
# CSP-Dark-PAN head
|
31 |
+
head:
|
32 |
+
[[-1, 1, SPPCSPC, [512]], # 12
|
33 |
+
[-1, 1, Conv, [384, 1, 1]],
|
34 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
35 |
+
[-6, 1, Conv, [384, 1, 1]], # route backbone P5
|
36 |
+
[[-1, -2], 1, Concat, [1]],
|
37 |
+
[-1, 3, BottleneckCSPB, [384]], # 17
|
38 |
+
[-1, 1, Conv, [256, 1, 1]],
|
39 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
40 |
+
[-13, 1, Conv, [256, 1, 1]], # route backbone P4
|
41 |
+
[[-1, -2], 1, Concat, [1]],
|
42 |
+
[-1, 3, BottleneckCSPB, [256]], # 22
|
43 |
+
[-1, 1, Conv, [128, 1, 1]],
|
44 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
45 |
+
[-20, 1, Conv, [128, 1, 1]], # route backbone P3
|
46 |
+
[[-1, -2], 1, Concat, [1]],
|
47 |
+
[-1, 3, BottleneckCSPB, [128]], # 27
|
48 |
+
[-1, 1, Conv, [256, 3, 1]],
|
49 |
+
[-2, 1, Conv, [256, 3, 2]],
|
50 |
+
[[-1, 22], 1, Concat, [1]], # cat
|
51 |
+
[-1, 3, BottleneckCSPB, [256]], # 31
|
52 |
+
[-1, 1, Conv, [512, 3, 1]],
|
53 |
+
[-2, 1, Conv, [384, 3, 2]],
|
54 |
+
[[-1, 17], 1, Concat, [1]], # cat
|
55 |
+
[-1, 3, BottleneckCSPB, [384]], # 35
|
56 |
+
[-1, 1, Conv, [768, 3, 1]],
|
57 |
+
[-2, 1, Conv, [512, 3, 2]],
|
58 |
+
[[-1, 12], 1, Concat, [1]], # cat
|
59 |
+
[-1, 3, BottleneckCSPB, [512]], # 39
|
60 |
+
[-1, 1, Conv, [1024, 3, 1]],
|
61 |
+
|
62 |
+
[[28,32,36,40], 1, IDetect, [nc, anchors]], # Detect(P3, P4, P5, P6)
|
63 |
+
]
|
cfg/baseline/yolov3-spp.yaml
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# parameters
|
2 |
+
nc: 80 # number of classes
|
3 |
+
depth_multiple: 1.0 # model depth multiple
|
4 |
+
width_multiple: 1.0 # layer channel multiple
|
5 |
+
|
6 |
+
# anchors
|
7 |
+
anchors:
|
8 |
+
- [10,13, 16,30, 33,23] # P3/8
|
9 |
+
- [30,61, 62,45, 59,119] # P4/16
|
10 |
+
- [116,90, 156,198, 373,326] # P5/32
|
11 |
+
|
12 |
+
# darknet53 backbone
|
13 |
+
backbone:
|
14 |
+
# [from, number, module, args]
|
15 |
+
[[-1, 1, Conv, [32, 3, 1]], # 0
|
16 |
+
[-1, 1, Conv, [64, 3, 2]], # 1-P1/2
|
17 |
+
[-1, 1, Bottleneck, [64]],
|
18 |
+
[-1, 1, Conv, [128, 3, 2]], # 3-P2/4
|
19 |
+
[-1, 2, Bottleneck, [128]],
|
20 |
+
[-1, 1, Conv, [256, 3, 2]], # 5-P3/8
|
21 |
+
[-1, 8, Bottleneck, [256]],
|
22 |
+
[-1, 1, Conv, [512, 3, 2]], # 7-P4/16
|
23 |
+
[-1, 8, Bottleneck, [512]],
|
24 |
+
[-1, 1, Conv, [1024, 3, 2]], # 9-P5/32
|
25 |
+
[-1, 4, Bottleneck, [1024]], # 10
|
26 |
+
]
|
27 |
+
|
28 |
+
# YOLOv3-SPP head
|
29 |
+
head:
|
30 |
+
[[-1, 1, Bottleneck, [1024, False]],
|
31 |
+
[-1, 1, SPP, [512, [5, 9, 13]]],
|
32 |
+
[-1, 1, Conv, [1024, 3, 1]],
|
33 |
+
[-1, 1, Conv, [512, 1, 1]],
|
34 |
+
[-1, 1, Conv, [1024, 3, 1]], # 15 (P5/32-large)
|
35 |
+
|
36 |
+
[-2, 1, Conv, [256, 1, 1]],
|
37 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
38 |
+
[[-1, 8], 1, Concat, [1]], # cat backbone P4
|
39 |
+
[-1, 1, Bottleneck, [512, False]],
|
40 |
+
[-1, 1, Bottleneck, [512, False]],
|
41 |
+
[-1, 1, Conv, [256, 1, 1]],
|
42 |
+
[-1, 1, Conv, [512, 3, 1]], # 22 (P4/16-medium)
|
43 |
+
|
44 |
+
[-2, 1, Conv, [128, 1, 1]],
|
45 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
46 |
+
[[-1, 6], 1, Concat, [1]], # cat backbone P3
|
47 |
+
[-1, 1, Bottleneck, [256, False]],
|
48 |
+
[-1, 2, Bottleneck, [256, False]], # 27 (P3/8-small)
|
49 |
+
|
50 |
+
[[27, 22, 15], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
51 |
+
]
|
cfg/baseline/yolov3.yaml
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# parameters
|
2 |
+
nc: 80 # number of classes
|
3 |
+
depth_multiple: 1.0 # model depth multiple
|
4 |
+
width_multiple: 1.0 # layer channel multiple
|
5 |
+
|
6 |
+
# anchors
|
7 |
+
anchors:
|
8 |
+
- [10,13, 16,30, 33,23] # P3/8
|
9 |
+
- [30,61, 62,45, 59,119] # P4/16
|
10 |
+
- [116,90, 156,198, 373,326] # P5/32
|
11 |
+
|
12 |
+
# darknet53 backbone
|
13 |
+
backbone:
|
14 |
+
# [from, number, module, args]
|
15 |
+
[[-1, 1, Conv, [32, 3, 1]], # 0
|
16 |
+
[-1, 1, Conv, [64, 3, 2]], # 1-P1/2
|
17 |
+
[-1, 1, Bottleneck, [64]],
|
18 |
+
[-1, 1, Conv, [128, 3, 2]], # 3-P2/4
|
19 |
+
[-1, 2, Bottleneck, [128]],
|
20 |
+
[-1, 1, Conv, [256, 3, 2]], # 5-P3/8
|
21 |
+
[-1, 8, Bottleneck, [256]],
|
22 |
+
[-1, 1, Conv, [512, 3, 2]], # 7-P4/16
|
23 |
+
[-1, 8, Bottleneck, [512]],
|
24 |
+
[-1, 1, Conv, [1024, 3, 2]], # 9-P5/32
|
25 |
+
[-1, 4, Bottleneck, [1024]], # 10
|
26 |
+
]
|
27 |
+
|
28 |
+
# YOLOv3 head
|
29 |
+
head:
|
30 |
+
[[-1, 1, Bottleneck, [1024, False]],
|
31 |
+
[-1, 1, Conv, [512, [1, 1]]],
|
32 |
+
[-1, 1, Conv, [1024, 3, 1]],
|
33 |
+
[-1, 1, Conv, [512, 1, 1]],
|
34 |
+
[-1, 1, Conv, [1024, 3, 1]], # 15 (P5/32-large)
|
35 |
+
|
36 |
+
[-2, 1, Conv, [256, 1, 1]],
|
37 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
38 |
+
[[-1, 8], 1, Concat, [1]], # cat backbone P4
|
39 |
+
[-1, 1, Bottleneck, [512, False]],
|
40 |
+
[-1, 1, Bottleneck, [512, False]],
|
41 |
+
[-1, 1, Conv, [256, 1, 1]],
|
42 |
+
[-1, 1, Conv, [512, 3, 1]], # 22 (P4/16-medium)
|
43 |
+
|
44 |
+
[-2, 1, Conv, [128, 1, 1]],
|
45 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
46 |
+
[[-1, 6], 1, Concat, [1]], # cat backbone P3
|
47 |
+
[-1, 1, Bottleneck, [256, False]],
|
48 |
+
[-1, 2, Bottleneck, [256, False]], # 27 (P3/8-small)
|
49 |
+
|
50 |
+
[[27, 22, 15], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
51 |
+
]
|
cfg/baseline/yolov4-csp.yaml
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# parameters
|
2 |
+
nc: 80 # number of classes
|
3 |
+
depth_multiple: 1.0 # model depth multiple
|
4 |
+
width_multiple: 1.0 # layer channel multiple
|
5 |
+
|
6 |
+
# anchors
|
7 |
+
anchors:
|
8 |
+
- [12,16, 19,36, 40,28] # P3/8
|
9 |
+
- [36,75, 76,55, 72,146] # P4/16
|
10 |
+
- [142,110, 192,243, 459,401] # P5/32
|
11 |
+
|
12 |
+
# CSP-Darknet backbone
|
13 |
+
backbone:
|
14 |
+
# [from, number, module, args]
|
15 |
+
[[-1, 1, Conv, [32, 3, 1]], # 0
|
16 |
+
[-1, 1, Conv, [64, 3, 2]], # 1-P1/2
|
17 |
+
[-1, 1, Bottleneck, [64]],
|
18 |
+
[-1, 1, Conv, [128, 3, 2]], # 3-P2/4
|
19 |
+
[-1, 2, BottleneckCSPC, [128]],
|
20 |
+
[-1, 1, Conv, [256, 3, 2]], # 5-P3/8
|
21 |
+
[-1, 8, BottleneckCSPC, [256]],
|
22 |
+
[-1, 1, Conv, [512, 3, 2]], # 7-P4/16
|
23 |
+
[-1, 8, BottleneckCSPC, [512]],
|
24 |
+
[-1, 1, Conv, [1024, 3, 2]], # 9-P5/32
|
25 |
+
[-1, 4, BottleneckCSPC, [1024]], # 10
|
26 |
+
]
|
27 |
+
|
28 |
+
# CSP-Dark-PAN head
|
29 |
+
head:
|
30 |
+
[[-1, 1, SPPCSPC, [512]], # 11
|
31 |
+
[-1, 1, Conv, [256, 1, 1]],
|
32 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
33 |
+
[8, 1, Conv, [256, 1, 1]], # route backbone P4
|
34 |
+
[[-1, -2], 1, Concat, [1]],
|
35 |
+
[-1, 2, BottleneckCSPB, [256]], # 16
|
36 |
+
[-1, 1, Conv, [128, 1, 1]],
|
37 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
38 |
+
[6, 1, Conv, [128, 1, 1]], # route backbone P3
|
39 |
+
[[-1, -2], 1, Concat, [1]],
|
40 |
+
[-1, 2, BottleneckCSPB, [128]], # 21
|
41 |
+
[-1, 1, Conv, [256, 3, 1]],
|
42 |
+
[-2, 1, Conv, [256, 3, 2]],
|
43 |
+
[[-1, 16], 1, Concat, [1]], # cat
|
44 |
+
[-1, 2, BottleneckCSPB, [256]], # 25
|
45 |
+
[-1, 1, Conv, [512, 3, 1]],
|
46 |
+
[-2, 1, Conv, [512, 3, 2]],
|
47 |
+
[[-1, 11], 1, Concat, [1]], # cat
|
48 |
+
[-1, 2, BottleneckCSPB, [512]], # 29
|
49 |
+
[-1, 1, Conv, [1024, 3, 1]],
|
50 |
+
|
51 |
+
[[22,26,30], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
52 |
+
]
|
cfg/deploy/yolov7-d6.yaml
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# parameters
|
2 |
+
nc: 80 # number of classes
|
3 |
+
depth_multiple: 1.0 # model depth multiple
|
4 |
+
width_multiple: 1.0 # layer channel multiple
|
5 |
+
|
6 |
+
# anchors
|
7 |
+
anchors:
|
8 |
+
- [ 19,27, 44,40, 38,94 ] # P3/8
|
9 |
+
- [ 96,68, 86,152, 180,137 ] # P4/16
|
10 |
+
- [ 140,301, 303,264, 238,542 ] # P5/32
|
11 |
+
- [ 436,615, 739,380, 925,792 ] # P6/64
|
12 |
+
|
13 |
+
# yolov7-d6 backbone
|
14 |
+
backbone:
|
15 |
+
# [from, number, module, args],
|
16 |
+
[[-1, 1, ReOrg, []], # 0
|
17 |
+
[-1, 1, Conv, [96, 3, 1]], # 1-P1/2
|
18 |
+
|
19 |
+
[-1, 1, DownC, [192]], # 2-P2/4
|
20 |
+
[-1, 1, Conv, [64, 1, 1]],
|
21 |
+
[-2, 1, Conv, [64, 1, 1]],
|
22 |
+
[-1, 1, Conv, [64, 3, 1]],
|
23 |
+
[-1, 1, Conv, [64, 3, 1]],
|
24 |
+
[-1, 1, Conv, [64, 3, 1]],
|
25 |
+
[-1, 1, Conv, [64, 3, 1]],
|
26 |
+
[-1, 1, Conv, [64, 3, 1]],
|
27 |
+
[-1, 1, Conv, [64, 3, 1]],
|
28 |
+
[-1, 1, Conv, [64, 3, 1]],
|
29 |
+
[-1, 1, Conv, [64, 3, 1]],
|
30 |
+
[[-1, -3, -5, -7, -9, -10], 1, Concat, [1]],
|
31 |
+
[-1, 1, Conv, [192, 1, 1]], # 14
|
32 |
+
|
33 |
+
[-1, 1, DownC, [384]], # 15-P3/8
|
34 |
+
[-1, 1, Conv, [128, 1, 1]],
|
35 |
+
[-2, 1, Conv, [128, 1, 1]],
|
36 |
+
[-1, 1, Conv, [128, 3, 1]],
|
37 |
+
[-1, 1, Conv, [128, 3, 1]],
|
38 |
+
[-1, 1, Conv, [128, 3, 1]],
|
39 |
+
[-1, 1, Conv, [128, 3, 1]],
|
40 |
+
[-1, 1, Conv, [128, 3, 1]],
|
41 |
+
[-1, 1, Conv, [128, 3, 1]],
|
42 |
+
[-1, 1, Conv, [128, 3, 1]],
|
43 |
+
[-1, 1, Conv, [128, 3, 1]],
|
44 |
+
[[-1, -3, -5, -7, -9, -10], 1, Concat, [1]],
|
45 |
+
[-1, 1, Conv, [384, 1, 1]], # 27
|
46 |
+
|
47 |
+
[-1, 1, DownC, [768]], # 28-P4/16
|
48 |
+
[-1, 1, Conv, [256, 1, 1]],
|
49 |
+
[-2, 1, Conv, [256, 1, 1]],
|
50 |
+
[-1, 1, Conv, [256, 3, 1]],
|
51 |
+
[-1, 1, Conv, [256, 3, 1]],
|
52 |
+
[-1, 1, Conv, [256, 3, 1]],
|
53 |
+
[-1, 1, Conv, [256, 3, 1]],
|
54 |
+
[-1, 1, Conv, [256, 3, 1]],
|
55 |
+
[-1, 1, Conv, [256, 3, 1]],
|
56 |
+
[-1, 1, Conv, [256, 3, 1]],
|
57 |
+
[-1, 1, Conv, [256, 3, 1]],
|
58 |
+
[[-1, -3, -5, -7, -9, -10], 1, Concat, [1]],
|
59 |
+
[-1, 1, Conv, [768, 1, 1]], # 40
|
60 |
+
|
61 |
+
[-1, 1, DownC, [1152]], # 41-P5/32
|
62 |
+
[-1, 1, Conv, [384, 1, 1]],
|
63 |
+
[-2, 1, Conv, [384, 1, 1]],
|
64 |
+
[-1, 1, Conv, [384, 3, 1]],
|
65 |
+
[-1, 1, Conv, [384, 3, 1]],
|
66 |
+
[-1, 1, Conv, [384, 3, 1]],
|
67 |
+
[-1, 1, Conv, [384, 3, 1]],
|
68 |
+
[-1, 1, Conv, [384, 3, 1]],
|
69 |
+
[-1, 1, Conv, [384, 3, 1]],
|
70 |
+
[-1, 1, Conv, [384, 3, 1]],
|
71 |
+
[-1, 1, Conv, [384, 3, 1]],
|
72 |
+
[[-1, -3, -5, -7, -9, -10], 1, Concat, [1]],
|
73 |
+
[-1, 1, Conv, [1152, 1, 1]], # 53
|
74 |
+
|
75 |
+
[-1, 1, DownC, [1536]], # 54-P6/64
|
76 |
+
[-1, 1, Conv, [512, 1, 1]],
|
77 |
+
[-2, 1, Conv, [512, 1, 1]],
|
78 |
+
[-1, 1, Conv, [512, 3, 1]],
|
79 |
+
[-1, 1, Conv, [512, 3, 1]],
|
80 |
+
[-1, 1, Conv, [512, 3, 1]],
|
81 |
+
[-1, 1, Conv, [512, 3, 1]],
|
82 |
+
[-1, 1, Conv, [512, 3, 1]],
|
83 |
+
[-1, 1, Conv, [512, 3, 1]],
|
84 |
+
[-1, 1, Conv, [512, 3, 1]],
|
85 |
+
[-1, 1, Conv, [512, 3, 1]],
|
86 |
+
[[-1, -3, -5, -7, -9, -10], 1, Concat, [1]],
|
87 |
+
[-1, 1, Conv, [1536, 1, 1]], # 66
|
88 |
+
]
|
89 |
+
|
90 |
+
# yolov7-d6 head
|
91 |
+
head:
|
92 |
+
[[-1, 1, SPPCSPC, [768]], # 67
|
93 |
+
|
94 |
+
[-1, 1, Conv, [576, 1, 1]],
|
95 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
96 |
+
[53, 1, Conv, [576, 1, 1]], # route backbone P5
|
97 |
+
[[-1, -2], 1, Concat, [1]],
|
98 |
+
|
99 |
+
[-1, 1, Conv, [384, 1, 1]],
|
100 |
+
[-2, 1, Conv, [384, 1, 1]],
|
101 |
+
[-1, 1, Conv, [192, 3, 1]],
|
102 |
+
[-1, 1, Conv, [192, 3, 1]],
|
103 |
+
[-1, 1, Conv, [192, 3, 1]],
|
104 |
+
[-1, 1, Conv, [192, 3, 1]],
|
105 |
+
[-1, 1, Conv, [192, 3, 1]],
|
106 |
+
[-1, 1, Conv, [192, 3, 1]],
|
107 |
+
[-1, 1, Conv, [192, 3, 1]],
|
108 |
+
[-1, 1, Conv, [192, 3, 1]],
|
109 |
+
[[-1, -2, -3, -4, -5, -6, -7, -8, -9, -10], 1, Concat, [1]],
|
110 |
+
[-1, 1, Conv, [576, 1, 1]], # 83
|
111 |
+
|
112 |
+
[-1, 1, Conv, [384, 1, 1]],
|
113 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
114 |
+
[40, 1, Conv, [384, 1, 1]], # route backbone P4
|
115 |
+
[[-1, -2], 1, Concat, [1]],
|
116 |
+
|
117 |
+
[-1, 1, Conv, [256, 1, 1]],
|
118 |
+
[-2, 1, Conv, [256, 1, 1]],
|
119 |
+
[-1, 1, Conv, [128, 3, 1]],
|
120 |
+
[-1, 1, Conv, [128, 3, 1]],
|
121 |
+
[-1, 1, Conv, [128, 3, 1]],
|
122 |
+
[-1, 1, Conv, [128, 3, 1]],
|
123 |
+
[-1, 1, Conv, [128, 3, 1]],
|
124 |
+
[-1, 1, Conv, [128, 3, 1]],
|
125 |
+
[-1, 1, Conv, [128, 3, 1]],
|
126 |
+
[-1, 1, Conv, [128, 3, 1]],
|
127 |
+
[[-1, -2, -3, -4, -5, -6, -7, -8, -9, -10], 1, Concat, [1]],
|
128 |
+
[-1, 1, Conv, [384, 1, 1]], # 99
|
129 |
+
|
130 |
+
[-1, 1, Conv, [192, 1, 1]],
|
131 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
132 |
+
[27, 1, Conv, [192, 1, 1]], # route backbone P3
|
133 |
+
[[-1, -2], 1, Concat, [1]],
|
134 |
+
|
135 |
+
[-1, 1, Conv, [128, 1, 1]],
|
136 |
+
[-2, 1, Conv, [128, 1, 1]],
|
137 |
+
[-1, 1, Conv, [64, 3, 1]],
|
138 |
+
[-1, 1, Conv, [64, 3, 1]],
|
139 |
+
[-1, 1, Conv, [64, 3, 1]],
|
140 |
+
[-1, 1, Conv, [64, 3, 1]],
|
141 |
+
[-1, 1, Conv, [64, 3, 1]],
|
142 |
+
[-1, 1, Conv, [64, 3, 1]],
|
143 |
+
[-1, 1, Conv, [64, 3, 1]],
|
144 |
+
[-1, 1, Conv, [64, 3, 1]],
|
145 |
+
[[-1, -2, -3, -4, -5, -6, -7, -8, -9, -10], 1, Concat, [1]],
|
146 |
+
[-1, 1, Conv, [192, 1, 1]], # 115
|
147 |
+
|
148 |
+
[-1, 1, DownC, [384]],
|
149 |
+
[[-1, 99], 1, Concat, [1]],
|
150 |
+
|
151 |
+
[-1, 1, Conv, [256, 1, 1]],
|
152 |
+
[-2, 1, Conv, [256, 1, 1]],
|
153 |
+
[-1, 1, Conv, [128, 3, 1]],
|
154 |
+
[-1, 1, Conv, [128, 3, 1]],
|
155 |
+
[-1, 1, Conv, [128, 3, 1]],
|
156 |
+
[-1, 1, Conv, [128, 3, 1]],
|
157 |
+
[-1, 1, Conv, [128, 3, 1]],
|
158 |
+
[-1, 1, Conv, [128, 3, 1]],
|
159 |
+
[-1, 1, Conv, [128, 3, 1]],
|
160 |
+
[-1, 1, Conv, [128, 3, 1]],
|
161 |
+
[[-1, -2, -3, -4, -5, -6, -7, -8, -9, -10], 1, Concat, [1]],
|
162 |
+
[-1, 1, Conv, [384, 1, 1]], # 129
|
163 |
+
|
164 |
+
[-1, 1, DownC, [576]],
|
165 |
+
[[-1, 83], 1, Concat, [1]],
|
166 |
+
|
167 |
+
[-1, 1, Conv, [384, 1, 1]],
|
168 |
+
[-2, 1, Conv, [384, 1, 1]],
|
169 |
+
[-1, 1, Conv, [192, 3, 1]],
|
170 |
+
[-1, 1, Conv, [192, 3, 1]],
|
171 |
+
[-1, 1, Conv, [192, 3, 1]],
|
172 |
+
[-1, 1, Conv, [192, 3, 1]],
|
173 |
+
[-1, 1, Conv, [192, 3, 1]],
|
174 |
+
[-1, 1, Conv, [192, 3, 1]],
|
175 |
+
[-1, 1, Conv, [192, 3, 1]],
|
176 |
+
[-1, 1, Conv, [192, 3, 1]],
|
177 |
+
[[-1, -2, -3, -4, -5, -6, -7, -8, -9, -10], 1, Concat, [1]],
|
178 |
+
[-1, 1, Conv, [576, 1, 1]], # 143
|
179 |
+
|
180 |
+
[-1, 1, DownC, [768]],
|
181 |
+
[[-1, 67], 1, Concat, [1]],
|
182 |
+
|
183 |
+
[-1, 1, Conv, [512, 1, 1]],
|
184 |
+
[-2, 1, Conv, [512, 1, 1]],
|
185 |
+
[-1, 1, Conv, [256, 3, 1]],
|
186 |
+
[-1, 1, Conv, [256, 3, 1]],
|
187 |
+
[-1, 1, Conv, [256, 3, 1]],
|
188 |
+
[-1, 1, Conv, [256, 3, 1]],
|
189 |
+
[-1, 1, Conv, [256, 3, 1]],
|
190 |
+
[-1, 1, Conv, [256, 3, 1]],
|
191 |
+
[-1, 1, Conv, [256, 3, 1]],
|
192 |
+
[-1, 1, Conv, [256, 3, 1]],
|
193 |
+
[[-1, -2, -3, -4, -5, -6, -7, -8, -9, -10], 1, Concat, [1]],
|
194 |
+
[-1, 1, Conv, [768, 1, 1]], # 157
|
195 |
+
|
196 |
+
[115, 1, Conv, [384, 3, 1]],
|
197 |
+
[129, 1, Conv, [768, 3, 1]],
|
198 |
+
[143, 1, Conv, [1152, 3, 1]],
|
199 |
+
[157, 1, Conv, [1536, 3, 1]],
|
200 |
+
|
201 |
+
[[158,159,160,161], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
|
202 |
+
]
|
cfg/deploy/yolov7-e6.yaml
ADDED
@@ -0,0 +1,180 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# parameters
|
2 |
+
nc: 80 # number of classes
|
3 |
+
depth_multiple: 1.0 # model depth multiple
|
4 |
+
width_multiple: 1.0 # layer channel multiple
|
5 |
+
|
6 |
+
# anchors
|
7 |
+
anchors:
|
8 |
+
- [ 19,27, 44,40, 38,94 ] # P3/8
|
9 |
+
- [ 96,68, 86,152, 180,137 ] # P4/16
|
10 |
+
- [ 140,301, 303,264, 238,542 ] # P5/32
|
11 |
+
- [ 436,615, 739,380, 925,792 ] # P6/64
|
12 |
+
|
13 |
+
# yolov7-e6 backbone
|
14 |
+
backbone:
|
15 |
+
# [from, number, module, args],
|
16 |
+
[[-1, 1, ReOrg, []], # 0
|
17 |
+
[-1, 1, Conv, [80, 3, 1]], # 1-P1/2
|
18 |
+
|
19 |
+
[-1, 1, DownC, [160]], # 2-P2/4
|
20 |
+
[-1, 1, Conv, [64, 1, 1]],
|
21 |
+
[-2, 1, Conv, [64, 1, 1]],
|
22 |
+
[-1, 1, Conv, [64, 3, 1]],
|
23 |
+
[-1, 1, Conv, [64, 3, 1]],
|
24 |
+
[-1, 1, Conv, [64, 3, 1]],
|
25 |
+
[-1, 1, Conv, [64, 3, 1]],
|
26 |
+
[-1, 1, Conv, [64, 3, 1]],
|
27 |
+
[-1, 1, Conv, [64, 3, 1]],
|
28 |
+
[[-1, -3, -5, -7, -8], 1, Concat, [1]],
|
29 |
+
[-1, 1, Conv, [160, 1, 1]], # 12
|
30 |
+
|
31 |
+
[-1, 1, DownC, [320]], # 13-P3/8
|
32 |
+
[-1, 1, Conv, [128, 1, 1]],
|
33 |
+
[-2, 1, Conv, [128, 1, 1]],
|
34 |
+
[-1, 1, Conv, [128, 3, 1]],
|
35 |
+
[-1, 1, Conv, [128, 3, 1]],
|
36 |
+
[-1, 1, Conv, [128, 3, 1]],
|
37 |
+
[-1, 1, Conv, [128, 3, 1]],
|
38 |
+
[-1, 1, Conv, [128, 3, 1]],
|
39 |
+
[-1, 1, Conv, [128, 3, 1]],
|
40 |
+
[[-1, -3, -5, -7, -8], 1, Concat, [1]],
|
41 |
+
[-1, 1, Conv, [320, 1, 1]], # 23
|
42 |
+
|
43 |
+
[-1, 1, DownC, [640]], # 24-P4/16
|
44 |
+
[-1, 1, Conv, [256, 1, 1]],
|
45 |
+
[-2, 1, Conv, [256, 1, 1]],
|
46 |
+
[-1, 1, Conv, [256, 3, 1]],
|
47 |
+
[-1, 1, Conv, [256, 3, 1]],
|
48 |
+
[-1, 1, Conv, [256, 3, 1]],
|
49 |
+
[-1, 1, Conv, [256, 3, 1]],
|
50 |
+
[-1, 1, Conv, [256, 3, 1]],
|
51 |
+
[-1, 1, Conv, [256, 3, 1]],
|
52 |
+
[[-1, -3, -5, -7, -8], 1, Concat, [1]],
|
53 |
+
[-1, 1, Conv, [640, 1, 1]], # 34
|
54 |
+
|
55 |
+
[-1, 1, DownC, [960]], # 35-P5/32
|
56 |
+
[-1, 1, Conv, [384, 1, 1]],
|
57 |
+
[-2, 1, Conv, [384, 1, 1]],
|
58 |
+
[-1, 1, Conv, [384, 3, 1]],
|
59 |
+
[-1, 1, Conv, [384, 3, 1]],
|
60 |
+
[-1, 1, Conv, [384, 3, 1]],
|
61 |
+
[-1, 1, Conv, [384, 3, 1]],
|
62 |
+
[-1, 1, Conv, [384, 3, 1]],
|
63 |
+
[-1, 1, Conv, [384, 3, 1]],
|
64 |
+
[[-1, -3, -5, -7, -8], 1, Concat, [1]],
|
65 |
+
[-1, 1, Conv, [960, 1, 1]], # 45
|
66 |
+
|
67 |
+
[-1, 1, DownC, [1280]], # 46-P6/64
|
68 |
+
[-1, 1, Conv, [512, 1, 1]],
|
69 |
+
[-2, 1, Conv, [512, 1, 1]],
|
70 |
+
[-1, 1, Conv, [512, 3, 1]],
|
71 |
+
[-1, 1, Conv, [512, 3, 1]],
|
72 |
+
[-1, 1, Conv, [512, 3, 1]],
|
73 |
+
[-1, 1, Conv, [512, 3, 1]],
|
74 |
+
[-1, 1, Conv, [512, 3, 1]],
|
75 |
+
[-1, 1, Conv, [512, 3, 1]],
|
76 |
+
[[-1, -3, -5, -7, -8], 1, Concat, [1]],
|
77 |
+
[-1, 1, Conv, [1280, 1, 1]], # 56
|
78 |
+
]
|
79 |
+
|
80 |
+
# yolov7-e6 head
|
81 |
+
head:
|
82 |
+
[[-1, 1, SPPCSPC, [640]], # 57
|
83 |
+
|
84 |
+
[-1, 1, Conv, [480, 1, 1]],
|
85 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
86 |
+
[45, 1, Conv, [480, 1, 1]], # route backbone P5
|
87 |
+
[[-1, -2], 1, Concat, [1]],
|
88 |
+
|
89 |
+
[-1, 1, Conv, [384, 1, 1]],
|
90 |
+
[-2, 1, Conv, [384, 1, 1]],
|
91 |
+
[-1, 1, Conv, [192, 3, 1]],
|
92 |
+
[-1, 1, Conv, [192, 3, 1]],
|
93 |
+
[-1, 1, Conv, [192, 3, 1]],
|
94 |
+
[-1, 1, Conv, [192, 3, 1]],
|
95 |
+
[-1, 1, Conv, [192, 3, 1]],
|
96 |
+
[-1, 1, Conv, [192, 3, 1]],
|
97 |
+
[[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
|
98 |
+
[-1, 1, Conv, [480, 1, 1]], # 71
|
99 |
+
|
100 |
+
[-1, 1, Conv, [320, 1, 1]],
|
101 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
102 |
+
[34, 1, Conv, [320, 1, 1]], # route backbone P4
|
103 |
+
[[-1, -2], 1, Concat, [1]],
|
104 |
+
|
105 |
+
[-1, 1, Conv, [256, 1, 1]],
|
106 |
+
[-2, 1, Conv, [256, 1, 1]],
|
107 |
+
[-1, 1, Conv, [128, 3, 1]],
|
108 |
+
[-1, 1, Conv, [128, 3, 1]],
|
109 |
+
[-1, 1, Conv, [128, 3, 1]],
|
110 |
+
[-1, 1, Conv, [128, 3, 1]],
|
111 |
+
[-1, 1, Conv, [128, 3, 1]],
|
112 |
+
[-1, 1, Conv, [128, 3, 1]],
|
113 |
+
[[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
|
114 |
+
[-1, 1, Conv, [320, 1, 1]], # 85
|
115 |
+
|
116 |
+
[-1, 1, Conv, [160, 1, 1]],
|
117 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
118 |
+
[23, 1, Conv, [160, 1, 1]], # route backbone P3
|
119 |
+
[[-1, -2], 1, Concat, [1]],
|
120 |
+
|
121 |
+
[-1, 1, Conv, [128, 1, 1]],
|
122 |
+
[-2, 1, Conv, [128, 1, 1]],
|
123 |
+
[-1, 1, Conv, [64, 3, 1]],
|
124 |
+
[-1, 1, Conv, [64, 3, 1]],
|
125 |
+
[-1, 1, Conv, [64, 3, 1]],
|
126 |
+
[-1, 1, Conv, [64, 3, 1]],
|
127 |
+
[-1, 1, Conv, [64, 3, 1]],
|
128 |
+
[-1, 1, Conv, [64, 3, 1]],
|
129 |
+
[[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
|
130 |
+
[-1, 1, Conv, [160, 1, 1]], # 99
|
131 |
+
|
132 |
+
[-1, 1, DownC, [320]],
|
133 |
+
[[-1, 85], 1, Concat, [1]],
|
134 |
+
|
135 |
+
[-1, 1, Conv, [256, 1, 1]],
|
136 |
+
[-2, 1, Conv, [256, 1, 1]],
|
137 |
+
[-1, 1, Conv, [128, 3, 1]],
|
138 |
+
[-1, 1, Conv, [128, 3, 1]],
|
139 |
+
[-1, 1, Conv, [128, 3, 1]],
|
140 |
+
[-1, 1, Conv, [128, 3, 1]],
|
141 |
+
[-1, 1, Conv, [128, 3, 1]],
|
142 |
+
[-1, 1, Conv, [128, 3, 1]],
|
143 |
+
[[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
|
144 |
+
[-1, 1, Conv, [320, 1, 1]], # 111
|
145 |
+
|
146 |
+
[-1, 1, DownC, [480]],
|
147 |
+
[[-1, 71], 1, Concat, [1]],
|
148 |
+
|
149 |
+
[-1, 1, Conv, [384, 1, 1]],
|
150 |
+
[-2, 1, Conv, [384, 1, 1]],
|
151 |
+
[-1, 1, Conv, [192, 3, 1]],
|
152 |
+
[-1, 1, Conv, [192, 3, 1]],
|
153 |
+
[-1, 1, Conv, [192, 3, 1]],
|
154 |
+
[-1, 1, Conv, [192, 3, 1]],
|
155 |
+
[-1, 1, Conv, [192, 3, 1]],
|
156 |
+
[-1, 1, Conv, [192, 3, 1]],
|
157 |
+
[[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
|
158 |
+
[-1, 1, Conv, [480, 1, 1]], # 123
|
159 |
+
|
160 |
+
[-1, 1, DownC, [640]],
|
161 |
+
[[-1, 57], 1, Concat, [1]],
|
162 |
+
|
163 |
+
[-1, 1, Conv, [512, 1, 1]],
|
164 |
+
[-2, 1, Conv, [512, 1, 1]],
|
165 |
+
[-1, 1, Conv, [256, 3, 1]],
|
166 |
+
[-1, 1, Conv, [256, 3, 1]],
|
167 |
+
[-1, 1, Conv, [256, 3, 1]],
|
168 |
+
[-1, 1, Conv, [256, 3, 1]],
|
169 |
+
[-1, 1, Conv, [256, 3, 1]],
|
170 |
+
[-1, 1, Conv, [256, 3, 1]],
|
171 |
+
[[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
|
172 |
+
[-1, 1, Conv, [640, 1, 1]], # 135
|
173 |
+
|
174 |
+
[99, 1, Conv, [320, 3, 1]],
|
175 |
+
[111, 1, Conv, [640, 3, 1]],
|
176 |
+
[123, 1, Conv, [960, 3, 1]],
|
177 |
+
[135, 1, Conv, [1280, 3, 1]],
|
178 |
+
|
179 |
+
[[136,137,138,139], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
|
180 |
+
]
|
cfg/deploy/yolov7-e6e.yaml
ADDED
@@ -0,0 +1,301 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# parameters
|
2 |
+
nc: 80 # number of classes
|
3 |
+
depth_multiple: 1.0 # model depth multiple
|
4 |
+
width_multiple: 1.0 # layer channel multiple
|
5 |
+
|
6 |
+
# anchors
|
7 |
+
anchors:
|
8 |
+
- [ 19,27, 44,40, 38,94 ] # P3/8
|
9 |
+
- [ 96,68, 86,152, 180,137 ] # P4/16
|
10 |
+
- [ 140,301, 303,264, 238,542 ] # P5/32
|
11 |
+
- [ 436,615, 739,380, 925,792 ] # P6/64
|
12 |
+
|
13 |
+
# yolov7-e6e backbone
|
14 |
+
backbone:
|
15 |
+
# [from, number, module, args],
|
16 |
+
[[-1, 1, ReOrg, []], # 0
|
17 |
+
[-1, 1, Conv, [80, 3, 1]], # 1-P1/2
|
18 |
+
|
19 |
+
[-1, 1, DownC, [160]], # 2-P2/4
|
20 |
+
[-1, 1, Conv, [64, 1, 1]],
|
21 |
+
[-2, 1, Conv, [64, 1, 1]],
|
22 |
+
[-1, 1, Conv, [64, 3, 1]],
|
23 |
+
[-1, 1, Conv, [64, 3, 1]],
|
24 |
+
[-1, 1, Conv, [64, 3, 1]],
|
25 |
+
[-1, 1, Conv, [64, 3, 1]],
|
26 |
+
[-1, 1, Conv, [64, 3, 1]],
|
27 |
+
[-1, 1, Conv, [64, 3, 1]],
|
28 |
+
[[-1, -3, -5, -7, -8], 1, Concat, [1]],
|
29 |
+
[-1, 1, Conv, [160, 1, 1]], # 12
|
30 |
+
[-11, 1, Conv, [64, 1, 1]],
|
31 |
+
[-12, 1, Conv, [64, 1, 1]],
|
32 |
+
[-1, 1, Conv, [64, 3, 1]],
|
33 |
+
[-1, 1, Conv, [64, 3, 1]],
|
34 |
+
[-1, 1, Conv, [64, 3, 1]],
|
35 |
+
[-1, 1, Conv, [64, 3, 1]],
|
36 |
+
[-1, 1, Conv, [64, 3, 1]],
|
37 |
+
[-1, 1, Conv, [64, 3, 1]],
|
38 |
+
[[-1, -3, -5, -7, -8], 1, Concat, [1]],
|
39 |
+
[-1, 1, Conv, [160, 1, 1]], # 22
|
40 |
+
[[-1, -11], 1, Shortcut, [1]], # 23
|
41 |
+
|
42 |
+
[-1, 1, DownC, [320]], # 24-P3/8
|
43 |
+
[-1, 1, Conv, [128, 1, 1]],
|
44 |
+
[-2, 1, Conv, [128, 1, 1]],
|
45 |
+
[-1, 1, Conv, [128, 3, 1]],
|
46 |
+
[-1, 1, Conv, [128, 3, 1]],
|
47 |
+
[-1, 1, Conv, [128, 3, 1]],
|
48 |
+
[-1, 1, Conv, [128, 3, 1]],
|
49 |
+
[-1, 1, Conv, [128, 3, 1]],
|
50 |
+
[-1, 1, Conv, [128, 3, 1]],
|
51 |
+
[[-1, -3, -5, -7, -8], 1, Concat, [1]],
|
52 |
+
[-1, 1, Conv, [320, 1, 1]], # 34
|
53 |
+
[-11, 1, Conv, [128, 1, 1]],
|
54 |
+
[-12, 1, Conv, [128, 1, 1]],
|
55 |
+
[-1, 1, Conv, [128, 3, 1]],
|
56 |
+
[-1, 1, Conv, [128, 3, 1]],
|
57 |
+
[-1, 1, Conv, [128, 3, 1]],
|
58 |
+
[-1, 1, Conv, [128, 3, 1]],
|
59 |
+
[-1, 1, Conv, [128, 3, 1]],
|
60 |
+
[-1, 1, Conv, [128, 3, 1]],
|
61 |
+
[[-1, -3, -5, -7, -8], 1, Concat, [1]],
|
62 |
+
[-1, 1, Conv, [320, 1, 1]], # 44
|
63 |
+
[[-1, -11], 1, Shortcut, [1]], # 45
|
64 |
+
|
65 |
+
[-1, 1, DownC, [640]], # 46-P4/16
|
66 |
+
[-1, 1, Conv, [256, 1, 1]],
|
67 |
+
[-2, 1, Conv, [256, 1, 1]],
|
68 |
+
[-1, 1, Conv, [256, 3, 1]],
|
69 |
+
[-1, 1, Conv, [256, 3, 1]],
|
70 |
+
[-1, 1, Conv, [256, 3, 1]],
|
71 |
+
[-1, 1, Conv, [256, 3, 1]],
|
72 |
+
[-1, 1, Conv, [256, 3, 1]],
|
73 |
+
[-1, 1, Conv, [256, 3, 1]],
|
74 |
+
[[-1, -3, -5, -7, -8], 1, Concat, [1]],
|
75 |
+
[-1, 1, Conv, [640, 1, 1]], # 56
|
76 |
+
[-11, 1, Conv, [256, 1, 1]],
|
77 |
+
[-12, 1, Conv, [256, 1, 1]],
|
78 |
+
[-1, 1, Conv, [256, 3, 1]],
|
79 |
+
[-1, 1, Conv, [256, 3, 1]],
|
80 |
+
[-1, 1, Conv, [256, 3, 1]],
|
81 |
+
[-1, 1, Conv, [256, 3, 1]],
|
82 |
+
[-1, 1, Conv, [256, 3, 1]],
|
83 |
+
[-1, 1, Conv, [256, 3, 1]],
|
84 |
+
[[-1, -3, -5, -7, -8], 1, Concat, [1]],
|
85 |
+
[-1, 1, Conv, [640, 1, 1]], # 66
|
86 |
+
[[-1, -11], 1, Shortcut, [1]], # 67
|
87 |
+
|
88 |
+
[-1, 1, DownC, [960]], # 68-P5/32
|
89 |
+
[-1, 1, Conv, [384, 1, 1]],
|
90 |
+
[-2, 1, Conv, [384, 1, 1]],
|
91 |
+
[-1, 1, Conv, [384, 3, 1]],
|
92 |
+
[-1, 1, Conv, [384, 3, 1]],
|
93 |
+
[-1, 1, Conv, [384, 3, 1]],
|
94 |
+
[-1, 1, Conv, [384, 3, 1]],
|
95 |
+
[-1, 1, Conv, [384, 3, 1]],
|
96 |
+
[-1, 1, Conv, [384, 3, 1]],
|
97 |
+
[[-1, -3, -5, -7, -8], 1, Concat, [1]],
|
98 |
+
[-1, 1, Conv, [960, 1, 1]], # 78
|
99 |
+
[-11, 1, Conv, [384, 1, 1]],
|
100 |
+
[-12, 1, Conv, [384, 1, 1]],
|
101 |
+
[-1, 1, Conv, [384, 3, 1]],
|
102 |
+
[-1, 1, Conv, [384, 3, 1]],
|
103 |
+
[-1, 1, Conv, [384, 3, 1]],
|
104 |
+
[-1, 1, Conv, [384, 3, 1]],
|
105 |
+
[-1, 1, Conv, [384, 3, 1]],
|
106 |
+
[-1, 1, Conv, [384, 3, 1]],
|
107 |
+
[[-1, -3, -5, -7, -8], 1, Concat, [1]],
|
108 |
+
[-1, 1, Conv, [960, 1, 1]], # 88
|
109 |
+
[[-1, -11], 1, Shortcut, [1]], # 89
|
110 |
+
|
111 |
+
[-1, 1, DownC, [1280]], # 90-P6/64
|
112 |
+
[-1, 1, Conv, [512, 1, 1]],
|
113 |
+
[-2, 1, Conv, [512, 1, 1]],
|
114 |
+
[-1, 1, Conv, [512, 3, 1]],
|
115 |
+
[-1, 1, Conv, [512, 3, 1]],
|
116 |
+
[-1, 1, Conv, [512, 3, 1]],
|
117 |
+
[-1, 1, Conv, [512, 3, 1]],
|
118 |
+
[-1, 1, Conv, [512, 3, 1]],
|
119 |
+
[-1, 1, Conv, [512, 3, 1]],
|
120 |
+
[[-1, -3, -5, -7, -8], 1, Concat, [1]],
|
121 |
+
[-1, 1, Conv, [1280, 1, 1]], # 100
|
122 |
+
[-11, 1, Conv, [512, 1, 1]],
|
123 |
+
[-12, 1, Conv, [512, 1, 1]],
|
124 |
+
[-1, 1, Conv, [512, 3, 1]],
|
125 |
+
[-1, 1, Conv, [512, 3, 1]],
|
126 |
+
[-1, 1, Conv, [512, 3, 1]],
|
127 |
+
[-1, 1, Conv, [512, 3, 1]],
|
128 |
+
[-1, 1, Conv, [512, 3, 1]],
|
129 |
+
[-1, 1, Conv, [512, 3, 1]],
|
130 |
+
[[-1, -3, -5, -7, -8], 1, Concat, [1]],
|
131 |
+
[-1, 1, Conv, [1280, 1, 1]], # 110
|
132 |
+
[[-1, -11], 1, Shortcut, [1]], # 111
|
133 |
+
]
|
134 |
+
|
135 |
+
# yolov7-e6e head
|
136 |
+
head:
|
137 |
+
[[-1, 1, SPPCSPC, [640]], # 112
|
138 |
+
|
139 |
+
[-1, 1, Conv, [480, 1, 1]],
|
140 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
141 |
+
[89, 1, Conv, [480, 1, 1]], # route backbone P5
|
142 |
+
[[-1, -2], 1, Concat, [1]],
|
143 |
+
|
144 |
+
[-1, 1, Conv, [384, 1, 1]],
|
145 |
+
[-2, 1, Conv, [384, 1, 1]],
|
146 |
+
[-1, 1, Conv, [192, 3, 1]],
|
147 |
+
[-1, 1, Conv, [192, 3, 1]],
|
148 |
+
[-1, 1, Conv, [192, 3, 1]],
|
149 |
+
[-1, 1, Conv, [192, 3, 1]],
|
150 |
+
[-1, 1, Conv, [192, 3, 1]],
|
151 |
+
[-1, 1, Conv, [192, 3, 1]],
|
152 |
+
[[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
|
153 |
+
[-1, 1, Conv, [480, 1, 1]], # 126
|
154 |
+
[-11, 1, Conv, [384, 1, 1]],
|
155 |
+
[-12, 1, Conv, [384, 1, 1]],
|
156 |
+
[-1, 1, Conv, [192, 3, 1]],
|
157 |
+
[-1, 1, Conv, [192, 3, 1]],
|
158 |
+
[-1, 1, Conv, [192, 3, 1]],
|
159 |
+
[-1, 1, Conv, [192, 3, 1]],
|
160 |
+
[-1, 1, Conv, [192, 3, 1]],
|
161 |
+
[-1, 1, Conv, [192, 3, 1]],
|
162 |
+
[[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
|
163 |
+
[-1, 1, Conv, [480, 1, 1]], # 136
|
164 |
+
[[-1, -11], 1, Shortcut, [1]], # 137
|
165 |
+
|
166 |
+
[-1, 1, Conv, [320, 1, 1]],
|
167 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
168 |
+
[67, 1, Conv, [320, 1, 1]], # route backbone P4
|
169 |
+
[[-1, -2], 1, Concat, [1]],
|
170 |
+
|
171 |
+
[-1, 1, Conv, [256, 1, 1]],
|
172 |
+
[-2, 1, Conv, [256, 1, 1]],
|
173 |
+
[-1, 1, Conv, [128, 3, 1]],
|
174 |
+
[-1, 1, Conv, [128, 3, 1]],
|
175 |
+
[-1, 1, Conv, [128, 3, 1]],
|
176 |
+
[-1, 1, Conv, [128, 3, 1]],
|
177 |
+
[-1, 1, Conv, [128, 3, 1]],
|
178 |
+
[-1, 1, Conv, [128, 3, 1]],
|
179 |
+
[[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
|
180 |
+
[-1, 1, Conv, [320, 1, 1]], # 151
|
181 |
+
[-11, 1, Conv, [256, 1, 1]],
|
182 |
+
[-12, 1, Conv, [256, 1, 1]],
|
183 |
+
[-1, 1, Conv, [128, 3, 1]],
|
184 |
+
[-1, 1, Conv, [128, 3, 1]],
|
185 |
+
[-1, 1, Conv, [128, 3, 1]],
|
186 |
+
[-1, 1, Conv, [128, 3, 1]],
|
187 |
+
[-1, 1, Conv, [128, 3, 1]],
|
188 |
+
[-1, 1, Conv, [128, 3, 1]],
|
189 |
+
[[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
|
190 |
+
[-1, 1, Conv, [320, 1, 1]], # 161
|
191 |
+
[[-1, -11], 1, Shortcut, [1]], # 162
|
192 |
+
|
193 |
+
[-1, 1, Conv, [160, 1, 1]],
|
194 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
195 |
+
[45, 1, Conv, [160, 1, 1]], # route backbone P3
|
196 |
+
[[-1, -2], 1, Concat, [1]],
|
197 |
+
|
198 |
+
[-1, 1, Conv, [128, 1, 1]],
|
199 |
+
[-2, 1, Conv, [128, 1, 1]],
|
200 |
+
[-1, 1, Conv, [64, 3, 1]],
|
201 |
+
[-1, 1, Conv, [64, 3, 1]],
|
202 |
+
[-1, 1, Conv, [64, 3, 1]],
|
203 |
+
[-1, 1, Conv, [64, 3, 1]],
|
204 |
+
[-1, 1, Conv, [64, 3, 1]],
|
205 |
+
[-1, 1, Conv, [64, 3, 1]],
|
206 |
+
[[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
|
207 |
+
[-1, 1, Conv, [160, 1, 1]], # 176
|
208 |
+
[-11, 1, Conv, [128, 1, 1]],
|
209 |
+
[-12, 1, Conv, [128, 1, 1]],
|
210 |
+
[-1, 1, Conv, [64, 3, 1]],
|
211 |
+
[-1, 1, Conv, [64, 3, 1]],
|
212 |
+
[-1, 1, Conv, [64, 3, 1]],
|
213 |
+
[-1, 1, Conv, [64, 3, 1]],
|
214 |
+
[-1, 1, Conv, [64, 3, 1]],
|
215 |
+
[-1, 1, Conv, [64, 3, 1]],
|
216 |
+
[[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
|
217 |
+
[-1, 1, Conv, [160, 1, 1]], # 186
|
218 |
+
[[-1, -11], 1, Shortcut, [1]], # 187
|
219 |
+
|
220 |
+
[-1, 1, DownC, [320]],
|
221 |
+
[[-1, 162], 1, Concat, [1]],
|
222 |
+
|
223 |
+
[-1, 1, Conv, [256, 1, 1]],
|
224 |
+
[-2, 1, Conv, [256, 1, 1]],
|
225 |
+
[-1, 1, Conv, [128, 3, 1]],
|
226 |
+
[-1, 1, Conv, [128, 3, 1]],
|
227 |
+
[-1, 1, Conv, [128, 3, 1]],
|
228 |
+
[-1, 1, Conv, [128, 3, 1]],
|
229 |
+
[-1, 1, Conv, [128, 3, 1]],
|
230 |
+
[-1, 1, Conv, [128, 3, 1]],
|
231 |
+
[[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
|
232 |
+
[-1, 1, Conv, [320, 1, 1]], # 199
|
233 |
+
[-11, 1, Conv, [256, 1, 1]],
|
234 |
+
[-12, 1, Conv, [256, 1, 1]],
|
235 |
+
[-1, 1, Conv, [128, 3, 1]],
|
236 |
+
[-1, 1, Conv, [128, 3, 1]],
|
237 |
+
[-1, 1, Conv, [128, 3, 1]],
|
238 |
+
[-1, 1, Conv, [128, 3, 1]],
|
239 |
+
[-1, 1, Conv, [128, 3, 1]],
|
240 |
+
[-1, 1, Conv, [128, 3, 1]],
|
241 |
+
[[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
|
242 |
+
[-1, 1, Conv, [320, 1, 1]], # 209
|
243 |
+
[[-1, -11], 1, Shortcut, [1]], # 210
|
244 |
+
|
245 |
+
[-1, 1, DownC, [480]],
|
246 |
+
[[-1, 137], 1, Concat, [1]],
|
247 |
+
|
248 |
+
[-1, 1, Conv, [384, 1, 1]],
|
249 |
+
[-2, 1, Conv, [384, 1, 1]],
|
250 |
+
[-1, 1, Conv, [192, 3, 1]],
|
251 |
+
[-1, 1, Conv, [192, 3, 1]],
|
252 |
+
[-1, 1, Conv, [192, 3, 1]],
|
253 |
+
[-1, 1, Conv, [192, 3, 1]],
|
254 |
+
[-1, 1, Conv, [192, 3, 1]],
|
255 |
+
[-1, 1, Conv, [192, 3, 1]],
|
256 |
+
[[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
|
257 |
+
[-1, 1, Conv, [480, 1, 1]], # 222
|
258 |
+
[-11, 1, Conv, [384, 1, 1]],
|
259 |
+
[-12, 1, Conv, [384, 1, 1]],
|
260 |
+
[-1, 1, Conv, [192, 3, 1]],
|
261 |
+
[-1, 1, Conv, [192, 3, 1]],
|
262 |
+
[-1, 1, Conv, [192, 3, 1]],
|
263 |
+
[-1, 1, Conv, [192, 3, 1]],
|
264 |
+
[-1, 1, Conv, [192, 3, 1]],
|
265 |
+
[-1, 1, Conv, [192, 3, 1]],
|
266 |
+
[[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
|
267 |
+
[-1, 1, Conv, [480, 1, 1]], # 232
|
268 |
+
[[-1, -11], 1, Shortcut, [1]], # 233
|
269 |
+
|
270 |
+
[-1, 1, DownC, [640]],
|
271 |
+
[[-1, 112], 1, Concat, [1]],
|
272 |
+
|
273 |
+
[-1, 1, Conv, [512, 1, 1]],
|
274 |
+
[-2, 1, Conv, [512, 1, 1]],
|
275 |
+
[-1, 1, Conv, [256, 3, 1]],
|
276 |
+
[-1, 1, Conv, [256, 3, 1]],
|
277 |
+
[-1, 1, Conv, [256, 3, 1]],
|
278 |
+
[-1, 1, Conv, [256, 3, 1]],
|
279 |
+
[-1, 1, Conv, [256, 3, 1]],
|
280 |
+
[-1, 1, Conv, [256, 3, 1]],
|
281 |
+
[[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
|
282 |
+
[-1, 1, Conv, [640, 1, 1]], # 245
|
283 |
+
[-11, 1, Conv, [512, 1, 1]],
|
284 |
+
[-12, 1, Conv, [512, 1, 1]],
|
285 |
+
[-1, 1, Conv, [256, 3, 1]],
|
286 |
+
[-1, 1, Conv, [256, 3, 1]],
|
287 |
+
[-1, 1, Conv, [256, 3, 1]],
|
288 |
+
[-1, 1, Conv, [256, 3, 1]],
|
289 |
+
[-1, 1, Conv, [256, 3, 1]],
|
290 |
+
[-1, 1, Conv, [256, 3, 1]],
|
291 |
+
[[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
|
292 |
+
[-1, 1, Conv, [640, 1, 1]], # 255
|
293 |
+
[[-1, -11], 1, Shortcut, [1]], # 256
|
294 |
+
|
295 |
+
[187, 1, Conv, [320, 3, 1]],
|
296 |
+
[210, 1, Conv, [640, 3, 1]],
|
297 |
+
[233, 1, Conv, [960, 3, 1]],
|
298 |
+
[256, 1, Conv, [1280, 3, 1]],
|
299 |
+
|
300 |
+
[[257,258,259,260], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
|
301 |
+
]
|
cfg/deploy/yolov7-tiny-silu.yaml
ADDED
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# parameters
|
2 |
+
nc: 80 # number of classes
|
3 |
+
depth_multiple: 1.0 # model depth multiple
|
4 |
+
width_multiple: 1.0 # layer channel multiple
|
5 |
+
|
6 |
+
# anchors
|
7 |
+
anchors:
|
8 |
+
- [10,13, 16,30, 33,23] # P3/8
|
9 |
+
- [30,61, 62,45, 59,119] # P4/16
|
10 |
+
- [116,90, 156,198, 373,326] # P5/32
|
11 |
+
|
12 |
+
# YOLOv7-tiny backbone
|
13 |
+
backbone:
|
14 |
+
# [from, number, module, args]
|
15 |
+
[[-1, 1, Conv, [32, 3, 2]], # 0-P1/2
|
16 |
+
|
17 |
+
[-1, 1, Conv, [64, 3, 2]], # 1-P2/4
|
18 |
+
|
19 |
+
[-1, 1, Conv, [32, 1, 1]],
|
20 |
+
[-2, 1, Conv, [32, 1, 1]],
|
21 |
+
[-1, 1, Conv, [32, 3, 1]],
|
22 |
+
[-1, 1, Conv, [32, 3, 1]],
|
23 |
+
[[-1, -2, -3, -4], 1, Concat, [1]],
|
24 |
+
[-1, 1, Conv, [64, 1, 1]], # 7
|
25 |
+
|
26 |
+
[-1, 1, MP, []], # 8-P3/8
|
27 |
+
[-1, 1, Conv, [64, 1, 1]],
|
28 |
+
[-2, 1, Conv, [64, 1, 1]],
|
29 |
+
[-1, 1, Conv, [64, 3, 1]],
|
30 |
+
[-1, 1, Conv, [64, 3, 1]],
|
31 |
+
[[-1, -2, -3, -4], 1, Concat, [1]],
|
32 |
+
[-1, 1, Conv, [128, 1, 1]], # 14
|
33 |
+
|
34 |
+
[-1, 1, MP, []], # 15-P4/16
|
35 |
+
[-1, 1, Conv, [128, 1, 1]],
|
36 |
+
[-2, 1, Conv, [128, 1, 1]],
|
37 |
+
[-1, 1, Conv, [128, 3, 1]],
|
38 |
+
[-1, 1, Conv, [128, 3, 1]],
|
39 |
+
[[-1, -2, -3, -4], 1, Concat, [1]],
|
40 |
+
[-1, 1, Conv, [256, 1, 1]], # 21
|
41 |
+
|
42 |
+
[-1, 1, MP, []], # 22-P5/32
|
43 |
+
[-1, 1, Conv, [256, 1, 1]],
|
44 |
+
[-2, 1, Conv, [256, 1, 1]],
|
45 |
+
[-1, 1, Conv, [256, 3, 1]],
|
46 |
+
[-1, 1, Conv, [256, 3, 1]],
|
47 |
+
[[-1, -2, -3, -4], 1, Concat, [1]],
|
48 |
+
[-1, 1, Conv, [512, 1, 1]], # 28
|
49 |
+
]
|
50 |
+
|
51 |
+
# YOLOv7-tiny head
|
52 |
+
head:
|
53 |
+
[[-1, 1, Conv, [256, 1, 1]],
|
54 |
+
[-2, 1, Conv, [256, 1, 1]],
|
55 |
+
[-1, 1, SP, [5]],
|
56 |
+
[-2, 1, SP, [9]],
|
57 |
+
[-3, 1, SP, [13]],
|
58 |
+
[[-1, -2, -3, -4], 1, Concat, [1]],
|
59 |
+
[-1, 1, Conv, [256, 1, 1]],
|
60 |
+
[[-1, -7], 1, Concat, [1]],
|
61 |
+
[-1, 1, Conv, [256, 1, 1]], # 37
|
62 |
+
|
63 |
+
[-1, 1, Conv, [128, 1, 1]],
|
64 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
65 |
+
[21, 1, Conv, [128, 1, 1]], # route backbone P4
|
66 |
+
[[-1, -2], 1, Concat, [1]],
|
67 |
+
|
68 |
+
[-1, 1, Conv, [64, 1, 1]],
|
69 |
+
[-2, 1, Conv, [64, 1, 1]],
|
70 |
+
[-1, 1, Conv, [64, 3, 1]],
|
71 |
+
[-1, 1, Conv, [64, 3, 1]],
|
72 |
+
[[-1, -2, -3, -4], 1, Concat, [1]],
|
73 |
+
[-1, 1, Conv, [128, 1, 1]], # 47
|
74 |
+
|
75 |
+
[-1, 1, Conv, [64, 1, 1]],
|
76 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
77 |
+
[14, 1, Conv, [64, 1, 1]], # route backbone P3
|
78 |
+
[[-1, -2], 1, Concat, [1]],
|
79 |
+
|
80 |
+
[-1, 1, Conv, [32, 1, 1]],
|
81 |
+
[-2, 1, Conv, [32, 1, 1]],
|
82 |
+
[-1, 1, Conv, [32, 3, 1]],
|
83 |
+
[-1, 1, Conv, [32, 3, 1]],
|
84 |
+
[[-1, -2, -3, -4], 1, Concat, [1]],
|
85 |
+
[-1, 1, Conv, [64, 1, 1]], # 57
|
86 |
+
|
87 |
+
[-1, 1, Conv, [128, 3, 2]],
|
88 |
+
[[-1, 47], 1, Concat, [1]],
|
89 |
+
|
90 |
+
[-1, 1, Conv, [64, 1, 1]],
|
91 |
+
[-2, 1, Conv, [64, 1, 1]],
|
92 |
+
[-1, 1, Conv, [64, 3, 1]],
|
93 |
+
[-1, 1, Conv, [64, 3, 1]],
|
94 |
+
[[-1, -2, -3, -4], 1, Concat, [1]],
|
95 |
+
[-1, 1, Conv, [128, 1, 1]], # 65
|
96 |
+
|
97 |
+
[-1, 1, Conv, [256, 3, 2]],
|
98 |
+
[[-1, 37], 1, Concat, [1]],
|
99 |
+
|
100 |
+
[-1, 1, Conv, [128, 1, 1]],
|
101 |
+
[-2, 1, Conv, [128, 1, 1]],
|
102 |
+
[-1, 1, Conv, [128, 3, 1]],
|
103 |
+
[-1, 1, Conv, [128, 3, 1]],
|
104 |
+
[[-1, -2, -3, -4], 1, Concat, [1]],
|
105 |
+
[-1, 1, Conv, [256, 1, 1]], # 73
|
106 |
+
|
107 |
+
[57, 1, Conv, [128, 3, 1]],
|
108 |
+
[65, 1, Conv, [256, 3, 1]],
|
109 |
+
[73, 1, Conv, [512, 3, 1]],
|
110 |
+
|
111 |
+
[[74,75,76], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
112 |
+
]
|
cfg/deploy/yolov7-tiny.yaml
ADDED
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# parameters
|
2 |
+
nc: 80 # number of classes
|
3 |
+
depth_multiple: 1.0 # model depth multiple
|
4 |
+
width_multiple: 1.0 # layer channel multiple
|
5 |
+
|
6 |
+
# anchors
|
7 |
+
anchors:
|
8 |
+
- [10,13, 16,30, 33,23] # P3/8
|
9 |
+
- [30,61, 62,45, 59,119] # P4/16
|
10 |
+
- [116,90, 156,198, 373,326] # P5/32
|
11 |
+
|
12 |
+
# yolov7-tiny backbone
|
13 |
+
backbone:
|
14 |
+
# [from, number, module, args] c2, k=1, s=1, p=None, g=1, act=True
|
15 |
+
[[-1, 1, Conv, [32, 3, 2, None, 1, nn.LeakyReLU(0.1)]], # 0-P1/2
|
16 |
+
|
17 |
+
[-1, 1, Conv, [64, 3, 2, None, 1, nn.LeakyReLU(0.1)]], # 1-P2/4
|
18 |
+
|
19 |
+
[-1, 1, Conv, [32, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
|
20 |
+
[-2, 1, Conv, [32, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
|
21 |
+
[-1, 1, Conv, [32, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
|
22 |
+
[-1, 1, Conv, [32, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
|
23 |
+
[[-1, -2, -3, -4], 1, Concat, [1]],
|
24 |
+
[-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # 7
|
25 |
+
|
26 |
+
[-1, 1, MP, []], # 8-P3/8
|
27 |
+
[-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
|
28 |
+
[-2, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
|
29 |
+
[-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
|
30 |
+
[-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
|
31 |
+
[[-1, -2, -3, -4], 1, Concat, [1]],
|
32 |
+
[-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # 14
|
33 |
+
|
34 |
+
[-1, 1, MP, []], # 15-P4/16
|
35 |
+
[-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
|
36 |
+
[-2, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
|
37 |
+
[-1, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
|
38 |
+
[-1, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
|
39 |
+
[[-1, -2, -3, -4], 1, Concat, [1]],
|
40 |
+
[-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # 21
|
41 |
+
|
42 |
+
[-1, 1, MP, []], # 22-P5/32
|
43 |
+
[-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
|
44 |
+
[-2, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
|
45 |
+
[-1, 1, Conv, [256, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
|
46 |
+
[-1, 1, Conv, [256, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
|
47 |
+
[[-1, -2, -3, -4], 1, Concat, [1]],
|
48 |
+
[-1, 1, Conv, [512, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # 28
|
49 |
+
]
|
50 |
+
|
51 |
+
# yolov7-tiny head
|
52 |
+
head:
|
53 |
+
[[-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
|
54 |
+
[-2, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
|
55 |
+
[-1, 1, SP, [5]],
|
56 |
+
[-2, 1, SP, [9]],
|
57 |
+
[-3, 1, SP, [13]],
|
58 |
+
[[-1, -2, -3, -4], 1, Concat, [1]],
|
59 |
+
[-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
|
60 |
+
[[-1, -7], 1, Concat, [1]],
|
61 |
+
[-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # 37
|
62 |
+
|
63 |
+
[-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
|
64 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
65 |
+
[21, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # route backbone P4
|
66 |
+
[[-1, -2], 1, Concat, [1]],
|
67 |
+
|
68 |
+
[-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
|
69 |
+
[-2, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
|
70 |
+
[-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
|
71 |
+
[-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
|
72 |
+
[[-1, -2, -3, -4], 1, Concat, [1]],
|
73 |
+
[-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # 47
|
74 |
+
|
75 |
+
[-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
|
76 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
77 |
+
[14, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # route backbone P3
|
78 |
+
[[-1, -2], 1, Concat, [1]],
|
79 |
+
|
80 |
+
[-1, 1, Conv, [32, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
|
81 |
+
[-2, 1, Conv, [32, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
|
82 |
+
[-1, 1, Conv, [32, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
|
83 |
+
[-1, 1, Conv, [32, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
|
84 |
+
[[-1, -2, -3, -4], 1, Concat, [1]],
|
85 |
+
[-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # 57
|
86 |
+
|
87 |
+
[-1, 1, Conv, [128, 3, 2, None, 1, nn.LeakyReLU(0.1)]],
|
88 |
+
[[-1, 47], 1, Concat, [1]],
|
89 |
+
|
90 |
+
[-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
|
91 |
+
[-2, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
|
92 |
+
[-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
|
93 |
+
[-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
|
94 |
+
[[-1, -2, -3, -4], 1, Concat, [1]],
|
95 |
+
[-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # 65
|
96 |
+
|
97 |
+
[-1, 1, Conv, [256, 3, 2, None, 1, nn.LeakyReLU(0.1)]],
|
98 |
+
[[-1, 37], 1, Concat, [1]],
|
99 |
+
|
100 |
+
[-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
|
101 |
+
[-2, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
|
102 |
+
[-1, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
|
103 |
+
[-1, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
|
104 |
+
[[-1, -2, -3, -4], 1, Concat, [1]],
|
105 |
+
[-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # 73
|
106 |
+
|
107 |
+
[57, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
|
108 |
+
[65, 1, Conv, [256, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
|
109 |
+
[73, 1, Conv, [512, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
|
110 |
+
|
111 |
+
[[74,75,76], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
112 |
+
]
|
cfg/deploy/yolov7-w6.yaml
ADDED
@@ -0,0 +1,158 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# parameters
|
2 |
+
nc: 80 # number of classes
|
3 |
+
depth_multiple: 1.0 # model depth multiple
|
4 |
+
width_multiple: 1.0 # layer channel multiple
|
5 |
+
|
6 |
+
# anchors
|
7 |
+
anchors:
|
8 |
+
- [ 19,27, 44,40, 38,94 ] # P3/8
|
9 |
+
- [ 96,68, 86,152, 180,137 ] # P4/16
|
10 |
+
- [ 140,301, 303,264, 238,542 ] # P5/32
|
11 |
+
- [ 436,615, 739,380, 925,792 ] # P6/64
|
12 |
+
|
13 |
+
# yolov7-w6 backbone
|
14 |
+
backbone:
|
15 |
+
# [from, number, module, args]
|
16 |
+
[[-1, 1, ReOrg, []], # 0
|
17 |
+
[-1, 1, Conv, [64, 3, 1]], # 1-P1/2
|
18 |
+
|
19 |
+
[-1, 1, Conv, [128, 3, 2]], # 2-P2/4
|
20 |
+
[-1, 1, Conv, [64, 1, 1]],
|
21 |
+
[-2, 1, Conv, [64, 1, 1]],
|
22 |
+
[-1, 1, Conv, [64, 3, 1]],
|
23 |
+
[-1, 1, Conv, [64, 3, 1]],
|
24 |
+
[-1, 1, Conv, [64, 3, 1]],
|
25 |
+
[-1, 1, Conv, [64, 3, 1]],
|
26 |
+
[[-1, -3, -5, -6], 1, Concat, [1]],
|
27 |
+
[-1, 1, Conv, [128, 1, 1]], # 10
|
28 |
+
|
29 |
+
[-1, 1, Conv, [256, 3, 2]], # 11-P3/8
|
30 |
+
[-1, 1, Conv, [128, 1, 1]],
|
31 |
+
[-2, 1, Conv, [128, 1, 1]],
|
32 |
+
[-1, 1, Conv, [128, 3, 1]],
|
33 |
+
[-1, 1, Conv, [128, 3, 1]],
|
34 |
+
[-1, 1, Conv, [128, 3, 1]],
|
35 |
+
[-1, 1, Conv, [128, 3, 1]],
|
36 |
+
[[-1, -3, -5, -6], 1, Concat, [1]],
|
37 |
+
[-1, 1, Conv, [256, 1, 1]], # 19
|
38 |
+
|
39 |
+
[-1, 1, Conv, [512, 3, 2]], # 20-P4/16
|
40 |
+
[-1, 1, Conv, [256, 1, 1]],
|
41 |
+
[-2, 1, Conv, [256, 1, 1]],
|
42 |
+
[-1, 1, Conv, [256, 3, 1]],
|
43 |
+
[-1, 1, Conv, [256, 3, 1]],
|
44 |
+
[-1, 1, Conv, [256, 3, 1]],
|
45 |
+
[-1, 1, Conv, [256, 3, 1]],
|
46 |
+
[[-1, -3, -5, -6], 1, Concat, [1]],
|
47 |
+
[-1, 1, Conv, [512, 1, 1]], # 28
|
48 |
+
|
49 |
+
[-1, 1, Conv, [768, 3, 2]], # 29-P5/32
|
50 |
+
[-1, 1, Conv, [384, 1, 1]],
|
51 |
+
[-2, 1, Conv, [384, 1, 1]],
|
52 |
+
[-1, 1, Conv, [384, 3, 1]],
|
53 |
+
[-1, 1, Conv, [384, 3, 1]],
|
54 |
+
[-1, 1, Conv, [384, 3, 1]],
|
55 |
+
[-1, 1, Conv, [384, 3, 1]],
|
56 |
+
[[-1, -3, -5, -6], 1, Concat, [1]],
|
57 |
+
[-1, 1, Conv, [768, 1, 1]], # 37
|
58 |
+
|
59 |
+
[-1, 1, Conv, [1024, 3, 2]], # 38-P6/64
|
60 |
+
[-1, 1, Conv, [512, 1, 1]],
|
61 |
+
[-2, 1, Conv, [512, 1, 1]],
|
62 |
+
[-1, 1, Conv, [512, 3, 1]],
|
63 |
+
[-1, 1, Conv, [512, 3, 1]],
|
64 |
+
[-1, 1, Conv, [512, 3, 1]],
|
65 |
+
[-1, 1, Conv, [512, 3, 1]],
|
66 |
+
[[-1, -3, -5, -6], 1, Concat, [1]],
|
67 |
+
[-1, 1, Conv, [1024, 1, 1]], # 46
|
68 |
+
]
|
69 |
+
|
70 |
+
# yolov7-w6 head
|
71 |
+
head:
|
72 |
+
[[-1, 1, SPPCSPC, [512]], # 47
|
73 |
+
|
74 |
+
[-1, 1, Conv, [384, 1, 1]],
|
75 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
76 |
+
[37, 1, Conv, [384, 1, 1]], # route backbone P5
|
77 |
+
[[-1, -2], 1, Concat, [1]],
|
78 |
+
|
79 |
+
[-1, 1, Conv, [384, 1, 1]],
|
80 |
+
[-2, 1, Conv, [384, 1, 1]],
|
81 |
+
[-1, 1, Conv, [192, 3, 1]],
|
82 |
+
[-1, 1, Conv, [192, 3, 1]],
|
83 |
+
[-1, 1, Conv, [192, 3, 1]],
|
84 |
+
[-1, 1, Conv, [192, 3, 1]],
|
85 |
+
[[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
|
86 |
+
[-1, 1, Conv, [384, 1, 1]], # 59
|
87 |
+
|
88 |
+
[-1, 1, Conv, [256, 1, 1]],
|
89 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
90 |
+
[28, 1, Conv, [256, 1, 1]], # route backbone P4
|
91 |
+
[[-1, -2], 1, Concat, [1]],
|
92 |
+
|
93 |
+
[-1, 1, Conv, [256, 1, 1]],
|
94 |
+
[-2, 1, Conv, [256, 1, 1]],
|
95 |
+
[-1, 1, Conv, [128, 3, 1]],
|
96 |
+
[-1, 1, Conv, [128, 3, 1]],
|
97 |
+
[-1, 1, Conv, [128, 3, 1]],
|
98 |
+
[-1, 1, Conv, [128, 3, 1]],
|
99 |
+
[[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
|
100 |
+
[-1, 1, Conv, [256, 1, 1]], # 71
|
101 |
+
|
102 |
+
[-1, 1, Conv, [128, 1, 1]],
|
103 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
104 |
+
[19, 1, Conv, [128, 1, 1]], # route backbone P3
|
105 |
+
[[-1, -2], 1, Concat, [1]],
|
106 |
+
|
107 |
+
[-1, 1, Conv, [128, 1, 1]],
|
108 |
+
[-2, 1, Conv, [128, 1, 1]],
|
109 |
+
[-1, 1, Conv, [64, 3, 1]],
|
110 |
+
[-1, 1, Conv, [64, 3, 1]],
|
111 |
+
[-1, 1, Conv, [64, 3, 1]],
|
112 |
+
[-1, 1, Conv, [64, 3, 1]],
|
113 |
+
[[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
|
114 |
+
[-1, 1, Conv, [128, 1, 1]], # 83
|
115 |
+
|
116 |
+
[-1, 1, Conv, [256, 3, 2]],
|
117 |
+
[[-1, 71], 1, Concat, [1]], # cat
|
118 |
+
|
119 |
+
[-1, 1, Conv, [256, 1, 1]],
|
120 |
+
[-2, 1, Conv, [256, 1, 1]],
|
121 |
+
[-1, 1, Conv, [128, 3, 1]],
|
122 |
+
[-1, 1, Conv, [128, 3, 1]],
|
123 |
+
[-1, 1, Conv, [128, 3, 1]],
|
124 |
+
[-1, 1, Conv, [128, 3, 1]],
|
125 |
+
[[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
|
126 |
+
[-1, 1, Conv, [256, 1, 1]], # 93
|
127 |
+
|
128 |
+
[-1, 1, Conv, [384, 3, 2]],
|
129 |
+
[[-1, 59], 1, Concat, [1]], # cat
|
130 |
+
|
131 |
+
[-1, 1, Conv, [384, 1, 1]],
|
132 |
+
[-2, 1, Conv, [384, 1, 1]],
|
133 |
+
[-1, 1, Conv, [192, 3, 1]],
|
134 |
+
[-1, 1, Conv, [192, 3, 1]],
|
135 |
+
[-1, 1, Conv, [192, 3, 1]],
|
136 |
+
[-1, 1, Conv, [192, 3, 1]],
|
137 |
+
[[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
|
138 |
+
[-1, 1, Conv, [384, 1, 1]], # 103
|
139 |
+
|
140 |
+
[-1, 1, Conv, [512, 3, 2]],
|
141 |
+
[[-1, 47], 1, Concat, [1]], # cat
|
142 |
+
|
143 |
+
[-1, 1, Conv, [512, 1, 1]],
|
144 |
+
[-2, 1, Conv, [512, 1, 1]],
|
145 |
+
[-1, 1, Conv, [256, 3, 1]],
|
146 |
+
[-1, 1, Conv, [256, 3, 1]],
|
147 |
+
[-1, 1, Conv, [256, 3, 1]],
|
148 |
+
[-1, 1, Conv, [256, 3, 1]],
|
149 |
+
[[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
|
150 |
+
[-1, 1, Conv, [512, 1, 1]], # 113
|
151 |
+
|
152 |
+
[83, 1, Conv, [256, 3, 1]],
|
153 |
+
[93, 1, Conv, [512, 3, 1]],
|
154 |
+
[103, 1, Conv, [768, 3, 1]],
|
155 |
+
[113, 1, Conv, [1024, 3, 1]],
|
156 |
+
|
157 |
+
[[114,115,116,117], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
|
158 |
+
]
|
cfg/deploy/yolov7.yaml
ADDED
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# parameters
|
2 |
+
nc: 80 # number of classes
|
3 |
+
depth_multiple: 1.0 # model depth multiple
|
4 |
+
width_multiple: 1.0 # layer channel multiple
|
5 |
+
|
6 |
+
# anchors
|
7 |
+
anchors:
|
8 |
+
- [12,16, 19,36, 40,28] # P3/8
|
9 |
+
- [36,75, 76,55, 72,146] # P4/16
|
10 |
+
- [142,110, 192,243, 459,401] # P5/32
|
11 |
+
|
12 |
+
# yolov7 backbone
|
13 |
+
backbone:
|
14 |
+
# [from, number, module, args]
|
15 |
+
[[-1, 1, Conv, [32, 3, 1]], # 0
|
16 |
+
|
17 |
+
[-1, 1, Conv, [64, 3, 2]], # 1-P1/2
|
18 |
+
[-1, 1, Conv, [64, 3, 1]],
|
19 |
+
|
20 |
+
[-1, 1, Conv, [128, 3, 2]], # 3-P2/4
|
21 |
+
[-1, 1, Conv, [64, 1, 1]],
|
22 |
+
[-2, 1, Conv, [64, 1, 1]],
|
23 |
+
[-1, 1, Conv, [64, 3, 1]],
|
24 |
+
[-1, 1, Conv, [64, 3, 1]],
|
25 |
+
[-1, 1, Conv, [64, 3, 1]],
|
26 |
+
[-1, 1, Conv, [64, 3, 1]],
|
27 |
+
[[-1, -3, -5, -6], 1, Concat, [1]],
|
28 |
+
[-1, 1, Conv, [256, 1, 1]], # 11
|
29 |
+
|
30 |
+
[-1, 1, MP, []],
|
31 |
+
[-1, 1, Conv, [128, 1, 1]],
|
32 |
+
[-3, 1, Conv, [128, 1, 1]],
|
33 |
+
[-1, 1, Conv, [128, 3, 2]],
|
34 |
+
[[-1, -3], 1, Concat, [1]], # 16-P3/8
|
35 |
+
[-1, 1, Conv, [128, 1, 1]],
|
36 |
+
[-2, 1, Conv, [128, 1, 1]],
|
37 |
+
[-1, 1, Conv, [128, 3, 1]],
|
38 |
+
[-1, 1, Conv, [128, 3, 1]],
|
39 |
+
[-1, 1, Conv, [128, 3, 1]],
|
40 |
+
[-1, 1, Conv, [128, 3, 1]],
|
41 |
+
[[-1, -3, -5, -6], 1, Concat, [1]],
|
42 |
+
[-1, 1, Conv, [512, 1, 1]], # 24
|
43 |
+
|
44 |
+
[-1, 1, MP, []],
|
45 |
+
[-1, 1, Conv, [256, 1, 1]],
|
46 |
+
[-3, 1, Conv, [256, 1, 1]],
|
47 |
+
[-1, 1, Conv, [256, 3, 2]],
|
48 |
+
[[-1, -3], 1, Concat, [1]], # 29-P4/16
|
49 |
+
[-1, 1, Conv, [256, 1, 1]],
|
50 |
+
[-2, 1, Conv, [256, 1, 1]],
|
51 |
+
[-1, 1, Conv, [256, 3, 1]],
|
52 |
+
[-1, 1, Conv, [256, 3, 1]],
|
53 |
+
[-1, 1, Conv, [256, 3, 1]],
|
54 |
+
[-1, 1, Conv, [256, 3, 1]],
|
55 |
+
[[-1, -3, -5, -6], 1, Concat, [1]],
|
56 |
+
[-1, 1, Conv, [1024, 1, 1]], # 37
|
57 |
+
|
58 |
+
[-1, 1, MP, []],
|
59 |
+
[-1, 1, Conv, [512, 1, 1]],
|
60 |
+
[-3, 1, Conv, [512, 1, 1]],
|
61 |
+
[-1, 1, Conv, [512, 3, 2]],
|
62 |
+
[[-1, -3], 1, Concat, [1]], # 42-P5/32
|
63 |
+
[-1, 1, Conv, [256, 1, 1]],
|
64 |
+
[-2, 1, Conv, [256, 1, 1]],
|
65 |
+
[-1, 1, Conv, [256, 3, 1]],
|
66 |
+
[-1, 1, Conv, [256, 3, 1]],
|
67 |
+
[-1, 1, Conv, [256, 3, 1]],
|
68 |
+
[-1, 1, Conv, [256, 3, 1]],
|
69 |
+
[[-1, -3, -5, -6], 1, Concat, [1]],
|
70 |
+
[-1, 1, Conv, [1024, 1, 1]], # 50
|
71 |
+
]
|
72 |
+
|
73 |
+
# yolov7 head
|
74 |
+
head:
|
75 |
+
[[-1, 1, SPPCSPC, [512]], # 51
|
76 |
+
|
77 |
+
[-1, 1, Conv, [256, 1, 1]],
|
78 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
79 |
+
[37, 1, Conv, [256, 1, 1]], # route backbone P4
|
80 |
+
[[-1, -2], 1, Concat, [1]],
|
81 |
+
|
82 |
+
[-1, 1, Conv, [256, 1, 1]],
|
83 |
+
[-2, 1, Conv, [256, 1, 1]],
|
84 |
+
[-1, 1, Conv, [128, 3, 1]],
|
85 |
+
[-1, 1, Conv, [128, 3, 1]],
|
86 |
+
[-1, 1, Conv, [128, 3, 1]],
|
87 |
+
[-1, 1, Conv, [128, 3, 1]],
|
88 |
+
[[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
|
89 |
+
[-1, 1, Conv, [256, 1, 1]], # 63
|
90 |
+
|
91 |
+
[-1, 1, Conv, [128, 1, 1]],
|
92 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
93 |
+
[24, 1, Conv, [128, 1, 1]], # route backbone P3
|
94 |
+
[[-1, -2], 1, Concat, [1]],
|
95 |
+
|
96 |
+
[-1, 1, Conv, [128, 1, 1]],
|
97 |
+
[-2, 1, Conv, [128, 1, 1]],
|
98 |
+
[-1, 1, Conv, [64, 3, 1]],
|
99 |
+
[-1, 1, Conv, [64, 3, 1]],
|
100 |
+
[-1, 1, Conv, [64, 3, 1]],
|
101 |
+
[-1, 1, Conv, [64, 3, 1]],
|
102 |
+
[[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
|
103 |
+
[-1, 1, Conv, [128, 1, 1]], # 75
|
104 |
+
|
105 |
+
[-1, 1, MP, []],
|
106 |
+
[-1, 1, Conv, [128, 1, 1]],
|
107 |
+
[-3, 1, Conv, [128, 1, 1]],
|
108 |
+
[-1, 1, Conv, [128, 3, 2]],
|
109 |
+
[[-1, -3, 63], 1, Concat, [1]],
|
110 |
+
|
111 |
+
[-1, 1, Conv, [256, 1, 1]],
|
112 |
+
[-2, 1, Conv, [256, 1, 1]],
|
113 |
+
[-1, 1, Conv, [128, 3, 1]],
|
114 |
+
[-1, 1, Conv, [128, 3, 1]],
|
115 |
+
[-1, 1, Conv, [128, 3, 1]],
|
116 |
+
[-1, 1, Conv, [128, 3, 1]],
|
117 |
+
[[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
|
118 |
+
[-1, 1, Conv, [256, 1, 1]], # 88
|
119 |
+
|
120 |
+
[-1, 1, MP, []],
|
121 |
+
[-1, 1, Conv, [256, 1, 1]],
|
122 |
+
[-3, 1, Conv, [256, 1, 1]],
|
123 |
+
[-1, 1, Conv, [256, 3, 2]],
|
124 |
+
[[-1, -3, 51], 1, Concat, [1]],
|
125 |
+
|
126 |
+
[-1, 1, Conv, [512, 1, 1]],
|
127 |
+
[-2, 1, Conv, [512, 1, 1]],
|
128 |
+
[-1, 1, Conv, [256, 3, 1]],
|
129 |
+
[-1, 1, Conv, [256, 3, 1]],
|
130 |
+
[-1, 1, Conv, [256, 3, 1]],
|
131 |
+
[-1, 1, Conv, [256, 3, 1]],
|
132 |
+
[[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
|
133 |
+
[-1, 1, Conv, [512, 1, 1]], # 101
|
134 |
+
|
135 |
+
[75, 1, RepConv, [256, 3, 1]],
|
136 |
+
[88, 1, RepConv, [512, 3, 1]],
|
137 |
+
[101, 1, RepConv, [1024, 3, 1]],
|
138 |
+
|
139 |
+
[[102,103,104], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
140 |
+
]
|
cfg/deploy/yolov7x.yaml
ADDED
@@ -0,0 +1,156 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# parameters
|
2 |
+
nc: 80 # number of classes
|
3 |
+
depth_multiple: 1.0 # model depth multiple
|
4 |
+
width_multiple: 1.0 # layer channel multiple
|
5 |
+
|
6 |
+
# anchors
|
7 |
+
anchors:
|
8 |
+
- [12,16, 19,36, 40,28] # P3/8
|
9 |
+
- [36,75, 76,55, 72,146] # P4/16
|
10 |
+
- [142,110, 192,243, 459,401] # P5/32
|
11 |
+
|
12 |
+
# yolov7x backbone
|
13 |
+
backbone:
|
14 |
+
# [from, number, module, args]
|
15 |
+
[[-1, 1, Conv, [40, 3, 1]], # 0
|
16 |
+
|
17 |
+
[-1, 1, Conv, [80, 3, 2]], # 1-P1/2
|
18 |
+
[-1, 1, Conv, [80, 3, 1]],
|
19 |
+
|
20 |
+
[-1, 1, Conv, [160, 3, 2]], # 3-P2/4
|
21 |
+
[-1, 1, Conv, [64, 1, 1]],
|
22 |
+
[-2, 1, Conv, [64, 1, 1]],
|
23 |
+
[-1, 1, Conv, [64, 3, 1]],
|
24 |
+
[-1, 1, Conv, [64, 3, 1]],
|
25 |
+
[-1, 1, Conv, [64, 3, 1]],
|
26 |
+
[-1, 1, Conv, [64, 3, 1]],
|
27 |
+
[-1, 1, Conv, [64, 3, 1]],
|
28 |
+
[-1, 1, Conv, [64, 3, 1]],
|
29 |
+
[[-1, -3, -5, -7, -8], 1, Concat, [1]],
|
30 |
+
[-1, 1, Conv, [320, 1, 1]], # 13
|
31 |
+
|
32 |
+
[-1, 1, MP, []],
|
33 |
+
[-1, 1, Conv, [160, 1, 1]],
|
34 |
+
[-3, 1, Conv, [160, 1, 1]],
|
35 |
+
[-1, 1, Conv, [160, 3, 2]],
|
36 |
+
[[-1, -3], 1, Concat, [1]], # 18-P3/8
|
37 |
+
[-1, 1, Conv, [128, 1, 1]],
|
38 |
+
[-2, 1, Conv, [128, 1, 1]],
|
39 |
+
[-1, 1, Conv, [128, 3, 1]],
|
40 |
+
[-1, 1, Conv, [128, 3, 1]],
|
41 |
+
[-1, 1, Conv, [128, 3, 1]],
|
42 |
+
[-1, 1, Conv, [128, 3, 1]],
|
43 |
+
[-1, 1, Conv, [128, 3, 1]],
|
44 |
+
[-1, 1, Conv, [128, 3, 1]],
|
45 |
+
[[-1, -3, -5, -7, -8], 1, Concat, [1]],
|
46 |
+
[-1, 1, Conv, [640, 1, 1]], # 28
|
47 |
+
|
48 |
+
[-1, 1, MP, []],
|
49 |
+
[-1, 1, Conv, [320, 1, 1]],
|
50 |
+
[-3, 1, Conv, [320, 1, 1]],
|
51 |
+
[-1, 1, Conv, [320, 3, 2]],
|
52 |
+
[[-1, -3], 1, Concat, [1]], # 33-P4/16
|
53 |
+
[-1, 1, Conv, [256, 1, 1]],
|
54 |
+
[-2, 1, Conv, [256, 1, 1]],
|
55 |
+
[-1, 1, Conv, [256, 3, 1]],
|
56 |
+
[-1, 1, Conv, [256, 3, 1]],
|
57 |
+
[-1, 1, Conv, [256, 3, 1]],
|
58 |
+
[-1, 1, Conv, [256, 3, 1]],
|
59 |
+
[-1, 1, Conv, [256, 3, 1]],
|
60 |
+
[-1, 1, Conv, [256, 3, 1]],
|
61 |
+
[[-1, -3, -5, -7, -8], 1, Concat, [1]],
|
62 |
+
[-1, 1, Conv, [1280, 1, 1]], # 43
|
63 |
+
|
64 |
+
[-1, 1, MP, []],
|
65 |
+
[-1, 1, Conv, [640, 1, 1]],
|
66 |
+
[-3, 1, Conv, [640, 1, 1]],
|
67 |
+
[-1, 1, Conv, [640, 3, 2]],
|
68 |
+
[[-1, -3], 1, Concat, [1]], # 48-P5/32
|
69 |
+
[-1, 1, Conv, [256, 1, 1]],
|
70 |
+
[-2, 1, Conv, [256, 1, 1]],
|
71 |
+
[-1, 1, Conv, [256, 3, 1]],
|
72 |
+
[-1, 1, Conv, [256, 3, 1]],
|
73 |
+
[-1, 1, Conv, [256, 3, 1]],
|
74 |
+
[-1, 1, Conv, [256, 3, 1]],
|
75 |
+
[-1, 1, Conv, [256, 3, 1]],
|
76 |
+
[-1, 1, Conv, [256, 3, 1]],
|
77 |
+
[[-1, -3, -5, -7, -8], 1, Concat, [1]],
|
78 |
+
[-1, 1, Conv, [1280, 1, 1]], # 58
|
79 |
+
]
|
80 |
+
|
81 |
+
# yolov7x head
|
82 |
+
head:
|
83 |
+
[[-1, 1, SPPCSPC, [640]], # 59
|
84 |
+
|
85 |
+
[-1, 1, Conv, [320, 1, 1]],
|
86 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
87 |
+
[43, 1, Conv, [320, 1, 1]], # route backbone P4
|
88 |
+
[[-1, -2], 1, Concat, [1]],
|
89 |
+
|
90 |
+
[-1, 1, Conv, [256, 1, 1]],
|
91 |
+
[-2, 1, Conv, [256, 1, 1]],
|
92 |
+
[-1, 1, Conv, [256, 3, 1]],
|
93 |
+
[-1, 1, Conv, [256, 3, 1]],
|
94 |
+
[-1, 1, Conv, [256, 3, 1]],
|
95 |
+
[-1, 1, Conv, [256, 3, 1]],
|
96 |
+
[-1, 1, Conv, [256, 3, 1]],
|
97 |
+
[-1, 1, Conv, [256, 3, 1]],
|
98 |
+
[[-1, -3, -5, -7, -8], 1, Concat, [1]],
|
99 |
+
[-1, 1, Conv, [320, 1, 1]], # 73
|
100 |
+
|
101 |
+
[-1, 1, Conv, [160, 1, 1]],
|
102 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
103 |
+
[28, 1, Conv, [160, 1, 1]], # route backbone P3
|
104 |
+
[[-1, -2], 1, Concat, [1]],
|
105 |
+
|
106 |
+
[-1, 1, Conv, [128, 1, 1]],
|
107 |
+
[-2, 1, Conv, [128, 1, 1]],
|
108 |
+
[-1, 1, Conv, [128, 3, 1]],
|
109 |
+
[-1, 1, Conv, [128, 3, 1]],
|
110 |
+
[-1, 1, Conv, [128, 3, 1]],
|
111 |
+
[-1, 1, Conv, [128, 3, 1]],
|
112 |
+
[-1, 1, Conv, [128, 3, 1]],
|
113 |
+
[-1, 1, Conv, [128, 3, 1]],
|
114 |
+
[[-1, -3, -5, -7, -8], 1, Concat, [1]],
|
115 |
+
[-1, 1, Conv, [160, 1, 1]], # 87
|
116 |
+
|
117 |
+
[-1, 1, MP, []],
|
118 |
+
[-1, 1, Conv, [160, 1, 1]],
|
119 |
+
[-3, 1, Conv, [160, 1, 1]],
|
120 |
+
[-1, 1, Conv, [160, 3, 2]],
|
121 |
+
[[-1, -3, 73], 1, Concat, [1]],
|
122 |
+
|
123 |
+
[-1, 1, Conv, [256, 1, 1]],
|
124 |
+
[-2, 1, Conv, [256, 1, 1]],
|
125 |
+
[-1, 1, Conv, [256, 3, 1]],
|
126 |
+
[-1, 1, Conv, [256, 3, 1]],
|
127 |
+
[-1, 1, Conv, [256, 3, 1]],
|
128 |
+
[-1, 1, Conv, [256, 3, 1]],
|
129 |
+
[-1, 1, Conv, [256, 3, 1]],
|
130 |
+
[-1, 1, Conv, [256, 3, 1]],
|
131 |
+
[[-1, -3, -5, -7, -8], 1, Concat, [1]],
|
132 |
+
[-1, 1, Conv, [320, 1, 1]], # 102
|
133 |
+
|
134 |
+
[-1, 1, MP, []],
|
135 |
+
[-1, 1, Conv, [320, 1, 1]],
|
136 |
+
[-3, 1, Conv, [320, 1, 1]],
|
137 |
+
[-1, 1, Conv, [320, 3, 2]],
|
138 |
+
[[-1, -3, 59], 1, Concat, [1]],
|
139 |
+
|
140 |
+
[-1, 1, Conv, [512, 1, 1]],
|
141 |
+
[-2, 1, Conv, [512, 1, 1]],
|
142 |
+
[-1, 1, Conv, [512, 3, 1]],
|
143 |
+
[-1, 1, Conv, [512, 3, 1]],
|
144 |
+
[-1, 1, Conv, [512, 3, 1]],
|
145 |
+
[-1, 1, Conv, [512, 3, 1]],
|
146 |
+
[-1, 1, Conv, [512, 3, 1]],
|
147 |
+
[-1, 1, Conv, [512, 3, 1]],
|
148 |
+
[[-1, -3, -5, -7, -8], 1, Concat, [1]],
|
149 |
+
[-1, 1, Conv, [640, 1, 1]], # 117
|
150 |
+
|
151 |
+
[87, 1, Conv, [320, 3, 1]],
|
152 |
+
[102, 1, Conv, [640, 3, 1]],
|
153 |
+
[117, 1, Conv, [1280, 3, 1]],
|
154 |
+
|
155 |
+
[[118,119,120], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
156 |
+
]
|
cfg/training/yolov7-d6.yaml
ADDED
@@ -0,0 +1,207 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# parameters
|
2 |
+
nc: 80 # number of classes
|
3 |
+
depth_multiple: 1.0 # model depth multiple
|
4 |
+
width_multiple: 1.0 # layer channel multiple
|
5 |
+
|
6 |
+
# anchors
|
7 |
+
anchors:
|
8 |
+
- [ 19,27, 44,40, 38,94 ] # P3/8
|
9 |
+
- [ 96,68, 86,152, 180,137 ] # P4/16
|
10 |
+
- [ 140,301, 303,264, 238,542 ] # P5/32
|
11 |
+
- [ 436,615, 739,380, 925,792 ] # P6/64
|
12 |
+
|
13 |
+
# yolov7 backbone
|
14 |
+
backbone:
|
15 |
+
# [from, number, module, args],
|
16 |
+
[[-1, 1, ReOrg, []], # 0
|
17 |
+
[-1, 1, Conv, [96, 3, 1]], # 1-P1/2
|
18 |
+
|
19 |
+
[-1, 1, DownC, [192]], # 2-P2/4
|
20 |
+
[-1, 1, Conv, [64, 1, 1]],
|
21 |
+
[-2, 1, Conv, [64, 1, 1]],
|
22 |
+
[-1, 1, Conv, [64, 3, 1]],
|
23 |
+
[-1, 1, Conv, [64, 3, 1]],
|
24 |
+
[-1, 1, Conv, [64, 3, 1]],
|
25 |
+
[-1, 1, Conv, [64, 3, 1]],
|
26 |
+
[-1, 1, Conv, [64, 3, 1]],
|
27 |
+
[-1, 1, Conv, [64, 3, 1]],
|
28 |
+
[-1, 1, Conv, [64, 3, 1]],
|
29 |
+
[-1, 1, Conv, [64, 3, 1]],
|
30 |
+
[[-1, -3, -5, -7, -9, -10], 1, Concat, [1]],
|
31 |
+
[-1, 1, Conv, [192, 1, 1]], # 14
|
32 |
+
|
33 |
+
[-1, 1, DownC, [384]], # 15-P3/8
|
34 |
+
[-1, 1, Conv, [128, 1, 1]],
|
35 |
+
[-2, 1, Conv, [128, 1, 1]],
|
36 |
+
[-1, 1, Conv, [128, 3, 1]],
|
37 |
+
[-1, 1, Conv, [128, 3, 1]],
|
38 |
+
[-1, 1, Conv, [128, 3, 1]],
|
39 |
+
[-1, 1, Conv, [128, 3, 1]],
|
40 |
+
[-1, 1, Conv, [128, 3, 1]],
|
41 |
+
[-1, 1, Conv, [128, 3, 1]],
|
42 |
+
[-1, 1, Conv, [128, 3, 1]],
|
43 |
+
[-1, 1, Conv, [128, 3, 1]],
|
44 |
+
[[-1, -3, -5, -7, -9, -10], 1, Concat, [1]],
|
45 |
+
[-1, 1, Conv, [384, 1, 1]], # 27
|
46 |
+
|
47 |
+
[-1, 1, DownC, [768]], # 28-P4/16
|
48 |
+
[-1, 1, Conv, [256, 1, 1]],
|
49 |
+
[-2, 1, Conv, [256, 1, 1]],
|
50 |
+
[-1, 1, Conv, [256, 3, 1]],
|
51 |
+
[-1, 1, Conv, [256, 3, 1]],
|
52 |
+
[-1, 1, Conv, [256, 3, 1]],
|
53 |
+
[-1, 1, Conv, [256, 3, 1]],
|
54 |
+
[-1, 1, Conv, [256, 3, 1]],
|
55 |
+
[-1, 1, Conv, [256, 3, 1]],
|
56 |
+
[-1, 1, Conv, [256, 3, 1]],
|
57 |
+
[-1, 1, Conv, [256, 3, 1]],
|
58 |
+
[[-1, -3, -5, -7, -9, -10], 1, Concat, [1]],
|
59 |
+
[-1, 1, Conv, [768, 1, 1]], # 40
|
60 |
+
|
61 |
+
[-1, 1, DownC, [1152]], # 41-P5/32
|
62 |
+
[-1, 1, Conv, [384, 1, 1]],
|
63 |
+
[-2, 1, Conv, [384, 1, 1]],
|
64 |
+
[-1, 1, Conv, [384, 3, 1]],
|
65 |
+
[-1, 1, Conv, [384, 3, 1]],
|
66 |
+
[-1, 1, Conv, [384, 3, 1]],
|
67 |
+
[-1, 1, Conv, [384, 3, 1]],
|
68 |
+
[-1, 1, Conv, [384, 3, 1]],
|
69 |
+
[-1, 1, Conv, [384, 3, 1]],
|
70 |
+
[-1, 1, Conv, [384, 3, 1]],
|
71 |
+
[-1, 1, Conv, [384, 3, 1]],
|
72 |
+
[[-1, -3, -5, -7, -9, -10], 1, Concat, [1]],
|
73 |
+
[-1, 1, Conv, [1152, 1, 1]], # 53
|
74 |
+
|
75 |
+
[-1, 1, DownC, [1536]], # 54-P6/64
|
76 |
+
[-1, 1, Conv, [512, 1, 1]],
|
77 |
+
[-2, 1, Conv, [512, 1, 1]],
|
78 |
+
[-1, 1, Conv, [512, 3, 1]],
|
79 |
+
[-1, 1, Conv, [512, 3, 1]],
|
80 |
+
[-1, 1, Conv, [512, 3, 1]],
|
81 |
+
[-1, 1, Conv, [512, 3, 1]],
|
82 |
+
[-1, 1, Conv, [512, 3, 1]],
|
83 |
+
[-1, 1, Conv, [512, 3, 1]],
|
84 |
+
[-1, 1, Conv, [512, 3, 1]],
|
85 |
+
[-1, 1, Conv, [512, 3, 1]],
|
86 |
+
[[-1, -3, -5, -7, -9, -10], 1, Concat, [1]],
|
87 |
+
[-1, 1, Conv, [1536, 1, 1]], # 66
|
88 |
+
]
|
89 |
+
|
90 |
+
# yolov7 head
|
91 |
+
head:
|
92 |
+
[[-1, 1, SPPCSPC, [768]], # 67
|
93 |
+
|
94 |
+
[-1, 1, Conv, [576, 1, 1]],
|
95 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
96 |
+
[53, 1, Conv, [576, 1, 1]], # route backbone P5
|
97 |
+
[[-1, -2], 1, Concat, [1]],
|
98 |
+
|
99 |
+
[-1, 1, Conv, [384, 1, 1]],
|
100 |
+
[-2, 1, Conv, [384, 1, 1]],
|
101 |
+
[-1, 1, Conv, [192, 3, 1]],
|
102 |
+
[-1, 1, Conv, [192, 3, 1]],
|
103 |
+
[-1, 1, Conv, [192, 3, 1]],
|
104 |
+
[-1, 1, Conv, [192, 3, 1]],
|
105 |
+
[-1, 1, Conv, [192, 3, 1]],
|
106 |
+
[-1, 1, Conv, [192, 3, 1]],
|
107 |
+
[-1, 1, Conv, [192, 3, 1]],
|
108 |
+
[-1, 1, Conv, [192, 3, 1]],
|
109 |
+
[[-1, -2, -3, -4, -5, -6, -7, -8, -9, -10], 1, Concat, [1]],
|
110 |
+
[-1, 1, Conv, [576, 1, 1]], # 83
|
111 |
+
|
112 |
+
[-1, 1, Conv, [384, 1, 1]],
|
113 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
114 |
+
[40, 1, Conv, [384, 1, 1]], # route backbone P4
|
115 |
+
[[-1, -2], 1, Concat, [1]],
|
116 |
+
|
117 |
+
[-1, 1, Conv, [256, 1, 1]],
|
118 |
+
[-2, 1, Conv, [256, 1, 1]],
|
119 |
+
[-1, 1, Conv, [128, 3, 1]],
|
120 |
+
[-1, 1, Conv, [128, 3, 1]],
|
121 |
+
[-1, 1, Conv, [128, 3, 1]],
|
122 |
+
[-1, 1, Conv, [128, 3, 1]],
|
123 |
+
[-1, 1, Conv, [128, 3, 1]],
|
124 |
+
[-1, 1, Conv, [128, 3, 1]],
|
125 |
+
[-1, 1, Conv, [128, 3, 1]],
|
126 |
+
[-1, 1, Conv, [128, 3, 1]],
|
127 |
+
[[-1, -2, -3, -4, -5, -6, -7, -8, -9, -10], 1, Concat, [1]],
|
128 |
+
[-1, 1, Conv, [384, 1, 1]], # 99
|
129 |
+
|
130 |
+
[-1, 1, Conv, [192, 1, 1]],
|
131 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
132 |
+
[27, 1, Conv, [192, 1, 1]], # route backbone P3
|
133 |
+
[[-1, -2], 1, Concat, [1]],
|
134 |
+
|
135 |
+
[-1, 1, Conv, [128, 1, 1]],
|
136 |
+
[-2, 1, Conv, [128, 1, 1]],
|
137 |
+
[-1, 1, Conv, [64, 3, 1]],
|
138 |
+
[-1, 1, Conv, [64, 3, 1]],
|
139 |
+
[-1, 1, Conv, [64, 3, 1]],
|
140 |
+
[-1, 1, Conv, [64, 3, 1]],
|
141 |
+
[-1, 1, Conv, [64, 3, 1]],
|
142 |
+
[-1, 1, Conv, [64, 3, 1]],
|
143 |
+
[-1, 1, Conv, [64, 3, 1]],
|
144 |
+
[-1, 1, Conv, [64, 3, 1]],
|
145 |
+
[[-1, -2, -3, -4, -5, -6, -7, -8, -9, -10], 1, Concat, [1]],
|
146 |
+
[-1, 1, Conv, [192, 1, 1]], # 115
|
147 |
+
|
148 |
+
[-1, 1, DownC, [384]],
|
149 |
+
[[-1, 99], 1, Concat, [1]],
|
150 |
+
|
151 |
+
[-1, 1, Conv, [256, 1, 1]],
|
152 |
+
[-2, 1, Conv, [256, 1, 1]],
|
153 |
+
[-1, 1, Conv, [128, 3, 1]],
|
154 |
+
[-1, 1, Conv, [128, 3, 1]],
|
155 |
+
[-1, 1, Conv, [128, 3, 1]],
|
156 |
+
[-1, 1, Conv, [128, 3, 1]],
|
157 |
+
[-1, 1, Conv, [128, 3, 1]],
|
158 |
+
[-1, 1, Conv, [128, 3, 1]],
|
159 |
+
[-1, 1, Conv, [128, 3, 1]],
|
160 |
+
[-1, 1, Conv, [128, 3, 1]],
|
161 |
+
[[-1, -2, -3, -4, -5, -6, -7, -8, -9, -10], 1, Concat, [1]],
|
162 |
+
[-1, 1, Conv, [384, 1, 1]], # 129
|
163 |
+
|
164 |
+
[-1, 1, DownC, [576]],
|
165 |
+
[[-1, 83], 1, Concat, [1]],
|
166 |
+
|
167 |
+
[-1, 1, Conv, [384, 1, 1]],
|
168 |
+
[-2, 1, Conv, [384, 1, 1]],
|
169 |
+
[-1, 1, Conv, [192, 3, 1]],
|
170 |
+
[-1, 1, Conv, [192, 3, 1]],
|
171 |
+
[-1, 1, Conv, [192, 3, 1]],
|
172 |
+
[-1, 1, Conv, [192, 3, 1]],
|
173 |
+
[-1, 1, Conv, [192, 3, 1]],
|
174 |
+
[-1, 1, Conv, [192, 3, 1]],
|
175 |
+
[-1, 1, Conv, [192, 3, 1]],
|
176 |
+
[-1, 1, Conv, [192, 3, 1]],
|
177 |
+
[[-1, -2, -3, -4, -5, -6, -7, -8, -9, -10], 1, Concat, [1]],
|
178 |
+
[-1, 1, Conv, [576, 1, 1]], # 143
|
179 |
+
|
180 |
+
[-1, 1, DownC, [768]],
|
181 |
+
[[-1, 67], 1, Concat, [1]],
|
182 |
+
|
183 |
+
[-1, 1, Conv, [512, 1, 1]],
|
184 |
+
[-2, 1, Conv, [512, 1, 1]],
|
185 |
+
[-1, 1, Conv, [256, 3, 1]],
|
186 |
+
[-1, 1, Conv, [256, 3, 1]],
|
187 |
+
[-1, 1, Conv, [256, 3, 1]],
|
188 |
+
[-1, 1, Conv, [256, 3, 1]],
|
189 |
+
[-1, 1, Conv, [256, 3, 1]],
|
190 |
+
[-1, 1, Conv, [256, 3, 1]],
|
191 |
+
[-1, 1, Conv, [256, 3, 1]],
|
192 |
+
[-1, 1, Conv, [256, 3, 1]],
|
193 |
+
[[-1, -2, -3, -4, -5, -6, -7, -8, -9, -10], 1, Concat, [1]],
|
194 |
+
[-1, 1, Conv, [768, 1, 1]], # 157
|
195 |
+
|
196 |
+
[115, 1, Conv, [384, 3, 1]],
|
197 |
+
[129, 1, Conv, [768, 3, 1]],
|
198 |
+
[143, 1, Conv, [1152, 3, 1]],
|
199 |
+
[157, 1, Conv, [1536, 3, 1]],
|
200 |
+
|
201 |
+
[115, 1, Conv, [384, 3, 1]],
|
202 |
+
[99, 1, Conv, [768, 3, 1]],
|
203 |
+
[83, 1, Conv, [1152, 3, 1]],
|
204 |
+
[67, 1, Conv, [1536, 3, 1]],
|
205 |
+
|
206 |
+
[[158,159,160,161,162,163,164,165], 1, IAuxDetect, [nc, anchors]], # Detect(P3, P4, P5, P6)
|
207 |
+
]
|
cfg/training/yolov7-e6.yaml
ADDED
@@ -0,0 +1,185 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# parameters
|
2 |
+
nc: 80 # number of classes
|
3 |
+
depth_multiple: 1.0 # model depth multiple
|
4 |
+
width_multiple: 1.0 # layer channel multiple
|
5 |
+
|
6 |
+
# anchors
|
7 |
+
anchors:
|
8 |
+
- [ 19,27, 44,40, 38,94 ] # P3/8
|
9 |
+
- [ 96,68, 86,152, 180,137 ] # P4/16
|
10 |
+
- [ 140,301, 303,264, 238,542 ] # P5/32
|
11 |
+
- [ 436,615, 739,380, 925,792 ] # P6/64
|
12 |
+
|
13 |
+
# yolov7 backbone
|
14 |
+
backbone:
|
15 |
+
# [from, number, module, args],
|
16 |
+
[[-1, 1, ReOrg, []], # 0
|
17 |
+
[-1, 1, Conv, [80, 3, 1]], # 1-P1/2
|
18 |
+
|
19 |
+
[-1, 1, DownC, [160]], # 2-P2/4
|
20 |
+
[-1, 1, Conv, [64, 1, 1]],
|
21 |
+
[-2, 1, Conv, [64, 1, 1]],
|
22 |
+
[-1, 1, Conv, [64, 3, 1]],
|
23 |
+
[-1, 1, Conv, [64, 3, 1]],
|
24 |
+
[-1, 1, Conv, [64, 3, 1]],
|
25 |
+
[-1, 1, Conv, [64, 3, 1]],
|
26 |
+
[-1, 1, Conv, [64, 3, 1]],
|
27 |
+
[-1, 1, Conv, [64, 3, 1]],
|
28 |
+
[[-1, -3, -5, -7, -8], 1, Concat, [1]],
|
29 |
+
[-1, 1, Conv, [160, 1, 1]], # 12
|
30 |
+
|
31 |
+
[-1, 1, DownC, [320]], # 13-P3/8
|
32 |
+
[-1, 1, Conv, [128, 1, 1]],
|
33 |
+
[-2, 1, Conv, [128, 1, 1]],
|
34 |
+
[-1, 1, Conv, [128, 3, 1]],
|
35 |
+
[-1, 1, Conv, [128, 3, 1]],
|
36 |
+
[-1, 1, Conv, [128, 3, 1]],
|
37 |
+
[-1, 1, Conv, [128, 3, 1]],
|
38 |
+
[-1, 1, Conv, [128, 3, 1]],
|
39 |
+
[-1, 1, Conv, [128, 3, 1]],
|
40 |
+
[[-1, -3, -5, -7, -8], 1, Concat, [1]],
|
41 |
+
[-1, 1, Conv, [320, 1, 1]], # 23
|
42 |
+
|
43 |
+
[-1, 1, DownC, [640]], # 24-P4/16
|
44 |
+
[-1, 1, Conv, [256, 1, 1]],
|
45 |
+
[-2, 1, Conv, [256, 1, 1]],
|
46 |
+
[-1, 1, Conv, [256, 3, 1]],
|
47 |
+
[-1, 1, Conv, [256, 3, 1]],
|
48 |
+
[-1, 1, Conv, [256, 3, 1]],
|
49 |
+
[-1, 1, Conv, [256, 3, 1]],
|
50 |
+
[-1, 1, Conv, [256, 3, 1]],
|
51 |
+
[-1, 1, Conv, [256, 3, 1]],
|
52 |
+
[[-1, -3, -5, -7, -8], 1, Concat, [1]],
|
53 |
+
[-1, 1, Conv, [640, 1, 1]], # 34
|
54 |
+
|
55 |
+
[-1, 1, DownC, [960]], # 35-P5/32
|
56 |
+
[-1, 1, Conv, [384, 1, 1]],
|
57 |
+
[-2, 1, Conv, [384, 1, 1]],
|
58 |
+
[-1, 1, Conv, [384, 3, 1]],
|
59 |
+
[-1, 1, Conv, [384, 3, 1]],
|
60 |
+
[-1, 1, Conv, [384, 3, 1]],
|
61 |
+
[-1, 1, Conv, [384, 3, 1]],
|
62 |
+
[-1, 1, Conv, [384, 3, 1]],
|
63 |
+
[-1, 1, Conv, [384, 3, 1]],
|
64 |
+
[[-1, -3, -5, -7, -8], 1, Concat, [1]],
|
65 |
+
[-1, 1, Conv, [960, 1, 1]], # 45
|
66 |
+
|
67 |
+
[-1, 1, DownC, [1280]], # 46-P6/64
|
68 |
+
[-1, 1, Conv, [512, 1, 1]],
|
69 |
+
[-2, 1, Conv, [512, 1, 1]],
|
70 |
+
[-1, 1, Conv, [512, 3, 1]],
|
71 |
+
[-1, 1, Conv, [512, 3, 1]],
|
72 |
+
[-1, 1, Conv, [512, 3, 1]],
|
73 |
+
[-1, 1, Conv, [512, 3, 1]],
|
74 |
+
[-1, 1, Conv, [512, 3, 1]],
|
75 |
+
[-1, 1, Conv, [512, 3, 1]],
|
76 |
+
[[-1, -3, -5, -7, -8], 1, Concat, [1]],
|
77 |
+
[-1, 1, Conv, [1280, 1, 1]], # 56
|
78 |
+
]
|
79 |
+
|
80 |
+
# yolov7 head
|
81 |
+
head:
|
82 |
+
[[-1, 1, SPPCSPC, [640]], # 57
|
83 |
+
|
84 |
+
[-1, 1, Conv, [480, 1, 1]],
|
85 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
86 |
+
[45, 1, Conv, [480, 1, 1]], # route backbone P5
|
87 |
+
[[-1, -2], 1, Concat, [1]],
|
88 |
+
|
89 |
+
[-1, 1, Conv, [384, 1, 1]],
|
90 |
+
[-2, 1, Conv, [384, 1, 1]],
|
91 |
+
[-1, 1, Conv, [192, 3, 1]],
|
92 |
+
[-1, 1, Conv, [192, 3, 1]],
|
93 |
+
[-1, 1, Conv, [192, 3, 1]],
|
94 |
+
[-1, 1, Conv, [192, 3, 1]],
|
95 |
+
[-1, 1, Conv, [192, 3, 1]],
|
96 |
+
[-1, 1, Conv, [192, 3, 1]],
|
97 |
+
[[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
|
98 |
+
[-1, 1, Conv, [480, 1, 1]], # 71
|
99 |
+
|
100 |
+
[-1, 1, Conv, [320, 1, 1]],
|
101 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
102 |
+
[34, 1, Conv, [320, 1, 1]], # route backbone P4
|
103 |
+
[[-1, -2], 1, Concat, [1]],
|
104 |
+
|
105 |
+
[-1, 1, Conv, [256, 1, 1]],
|
106 |
+
[-2, 1, Conv, [256, 1, 1]],
|
107 |
+
[-1, 1, Conv, [128, 3, 1]],
|
108 |
+
[-1, 1, Conv, [128, 3, 1]],
|
109 |
+
[-1, 1, Conv, [128, 3, 1]],
|
110 |
+
[-1, 1, Conv, [128, 3, 1]],
|
111 |
+
[-1, 1, Conv, [128, 3, 1]],
|
112 |
+
[-1, 1, Conv, [128, 3, 1]],
|
113 |
+
[[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
|
114 |
+
[-1, 1, Conv, [320, 1, 1]], # 85
|
115 |
+
|
116 |
+
[-1, 1, Conv, [160, 1, 1]],
|
117 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
118 |
+
[23, 1, Conv, [160, 1, 1]], # route backbone P3
|
119 |
+
[[-1, -2], 1, Concat, [1]],
|
120 |
+
|
121 |
+
[-1, 1, Conv, [128, 1, 1]],
|
122 |
+
[-2, 1, Conv, [128, 1, 1]],
|
123 |
+
[-1, 1, Conv, [64, 3, 1]],
|
124 |
+
[-1, 1, Conv, [64, 3, 1]],
|
125 |
+
[-1, 1, Conv, [64, 3, 1]],
|
126 |
+
[-1, 1, Conv, [64, 3, 1]],
|
127 |
+
[-1, 1, Conv, [64, 3, 1]],
|
128 |
+
[-1, 1, Conv, [64, 3, 1]],
|
129 |
+
[[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
|
130 |
+
[-1, 1, Conv, [160, 1, 1]], # 99
|
131 |
+
|
132 |
+
[-1, 1, DownC, [320]],
|
133 |
+
[[-1, 85], 1, Concat, [1]],
|
134 |
+
|
135 |
+
[-1, 1, Conv, [256, 1, 1]],
|
136 |
+
[-2, 1, Conv, [256, 1, 1]],
|
137 |
+
[-1, 1, Conv, [128, 3, 1]],
|
138 |
+
[-1, 1, Conv, [128, 3, 1]],
|
139 |
+
[-1, 1, Conv, [128, 3, 1]],
|
140 |
+
[-1, 1, Conv, [128, 3, 1]],
|
141 |
+
[-1, 1, Conv, [128, 3, 1]],
|
142 |
+
[-1, 1, Conv, [128, 3, 1]],
|
143 |
+
[[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
|
144 |
+
[-1, 1, Conv, [320, 1, 1]], # 111
|
145 |
+
|
146 |
+
[-1, 1, DownC, [480]],
|
147 |
+
[[-1, 71], 1, Concat, [1]],
|
148 |
+
|
149 |
+
[-1, 1, Conv, [384, 1, 1]],
|
150 |
+
[-2, 1, Conv, [384, 1, 1]],
|
151 |
+
[-1, 1, Conv, [192, 3, 1]],
|
152 |
+
[-1, 1, Conv, [192, 3, 1]],
|
153 |
+
[-1, 1, Conv, [192, 3, 1]],
|
154 |
+
[-1, 1, Conv, [192, 3, 1]],
|
155 |
+
[-1, 1, Conv, [192, 3, 1]],
|
156 |
+
[-1, 1, Conv, [192, 3, 1]],
|
157 |
+
[[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
|
158 |
+
[-1, 1, Conv, [480, 1, 1]], # 123
|
159 |
+
|
160 |
+
[-1, 1, DownC, [640]],
|
161 |
+
[[-1, 57], 1, Concat, [1]],
|
162 |
+
|
163 |
+
[-1, 1, Conv, [512, 1, 1]],
|
164 |
+
[-2, 1, Conv, [512, 1, 1]],
|
165 |
+
[-1, 1, Conv, [256, 3, 1]],
|
166 |
+
[-1, 1, Conv, [256, 3, 1]],
|
167 |
+
[-1, 1, Conv, [256, 3, 1]],
|
168 |
+
[-1, 1, Conv, [256, 3, 1]],
|
169 |
+
[-1, 1, Conv, [256, 3, 1]],
|
170 |
+
[-1, 1, Conv, [256, 3, 1]],
|
171 |
+
[[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
|
172 |
+
[-1, 1, Conv, [640, 1, 1]], # 135
|
173 |
+
|
174 |
+
[99, 1, Conv, [320, 3, 1]],
|
175 |
+
[111, 1, Conv, [640, 3, 1]],
|
176 |
+
[123, 1, Conv, [960, 3, 1]],
|
177 |
+
[135, 1, Conv, [1280, 3, 1]],
|
178 |
+
|
179 |
+
[99, 1, Conv, [320, 3, 1]],
|
180 |
+
[85, 1, Conv, [640, 3, 1]],
|
181 |
+
[71, 1, Conv, [960, 3, 1]],
|
182 |
+
[57, 1, Conv, [1280, 3, 1]],
|
183 |
+
|
184 |
+
[[136,137,138,139,140,141,142,143], 1, IAuxDetect, [nc, anchors]], # Detect(P3, P4, P5, P6)
|
185 |
+
]
|
cfg/training/yolov7-e6e.yaml
ADDED
@@ -0,0 +1,306 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# parameters
|
2 |
+
nc: 80 # number of classes
|
3 |
+
depth_multiple: 1.0 # model depth multiple
|
4 |
+
width_multiple: 1.0 # layer channel multiple
|
5 |
+
|
6 |
+
# anchors
|
7 |
+
anchors:
|
8 |
+
- [ 19,27, 44,40, 38,94 ] # P3/8
|
9 |
+
- [ 96,68, 86,152, 180,137 ] # P4/16
|
10 |
+
- [ 140,301, 303,264, 238,542 ] # P5/32
|
11 |
+
- [ 436,615, 739,380, 925,792 ] # P6/64
|
12 |
+
|
13 |
+
# yolov7 backbone
|
14 |
+
backbone:
|
15 |
+
# [from, number, module, args],
|
16 |
+
[[-1, 1, ReOrg, []], # 0
|
17 |
+
[-1, 1, Conv, [80, 3, 1]], # 1-P1/2
|
18 |
+
|
19 |
+
[-1, 1, DownC, [160]], # 2-P2/4
|
20 |
+
[-1, 1, Conv, [64, 1, 1]],
|
21 |
+
[-2, 1, Conv, [64, 1, 1]],
|
22 |
+
[-1, 1, Conv, [64, 3, 1]],
|
23 |
+
[-1, 1, Conv, [64, 3, 1]],
|
24 |
+
[-1, 1, Conv, [64, 3, 1]],
|
25 |
+
[-1, 1, Conv, [64, 3, 1]],
|
26 |
+
[-1, 1, Conv, [64, 3, 1]],
|
27 |
+
[-1, 1, Conv, [64, 3, 1]],
|
28 |
+
[[-1, -3, -5, -7, -8], 1, Concat, [1]],
|
29 |
+
[-1, 1, Conv, [160, 1, 1]], # 12
|
30 |
+
[-11, 1, Conv, [64, 1, 1]],
|
31 |
+
[-12, 1, Conv, [64, 1, 1]],
|
32 |
+
[-1, 1, Conv, [64, 3, 1]],
|
33 |
+
[-1, 1, Conv, [64, 3, 1]],
|
34 |
+
[-1, 1, Conv, [64, 3, 1]],
|
35 |
+
[-1, 1, Conv, [64, 3, 1]],
|
36 |
+
[-1, 1, Conv, [64, 3, 1]],
|
37 |
+
[-1, 1, Conv, [64, 3, 1]],
|
38 |
+
[[-1, -3, -5, -7, -8], 1, Concat, [1]],
|
39 |
+
[-1, 1, Conv, [160, 1, 1]], # 22
|
40 |
+
[[-1, -11], 1, Shortcut, [1]], # 23
|
41 |
+
|
42 |
+
[-1, 1, DownC, [320]], # 24-P3/8
|
43 |
+
[-1, 1, Conv, [128, 1, 1]],
|
44 |
+
[-2, 1, Conv, [128, 1, 1]],
|
45 |
+
[-1, 1, Conv, [128, 3, 1]],
|
46 |
+
[-1, 1, Conv, [128, 3, 1]],
|
47 |
+
[-1, 1, Conv, [128, 3, 1]],
|
48 |
+
[-1, 1, Conv, [128, 3, 1]],
|
49 |
+
[-1, 1, Conv, [128, 3, 1]],
|
50 |
+
[-1, 1, Conv, [128, 3, 1]],
|
51 |
+
[[-1, -3, -5, -7, -8], 1, Concat, [1]],
|
52 |
+
[-1, 1, Conv, [320, 1, 1]], # 34
|
53 |
+
[-11, 1, Conv, [128, 1, 1]],
|
54 |
+
[-12, 1, Conv, [128, 1, 1]],
|
55 |
+
[-1, 1, Conv, [128, 3, 1]],
|
56 |
+
[-1, 1, Conv, [128, 3, 1]],
|
57 |
+
[-1, 1, Conv, [128, 3, 1]],
|
58 |
+
[-1, 1, Conv, [128, 3, 1]],
|
59 |
+
[-1, 1, Conv, [128, 3, 1]],
|
60 |
+
[-1, 1, Conv, [128, 3, 1]],
|
61 |
+
[[-1, -3, -5, -7, -8], 1, Concat, [1]],
|
62 |
+
[-1, 1, Conv, [320, 1, 1]], # 44
|
63 |
+
[[-1, -11], 1, Shortcut, [1]], # 45
|
64 |
+
|
65 |
+
[-1, 1, DownC, [640]], # 46-P4/16
|
66 |
+
[-1, 1, Conv, [256, 1, 1]],
|
67 |
+
[-2, 1, Conv, [256, 1, 1]],
|
68 |
+
[-1, 1, Conv, [256, 3, 1]],
|
69 |
+
[-1, 1, Conv, [256, 3, 1]],
|
70 |
+
[-1, 1, Conv, [256, 3, 1]],
|
71 |
+
[-1, 1, Conv, [256, 3, 1]],
|
72 |
+
[-1, 1, Conv, [256, 3, 1]],
|
73 |
+
[-1, 1, Conv, [256, 3, 1]],
|
74 |
+
[[-1, -3, -5, -7, -8], 1, Concat, [1]],
|
75 |
+
[-1, 1, Conv, [640, 1, 1]], # 56
|
76 |
+
[-11, 1, Conv, [256, 1, 1]],
|
77 |
+
[-12, 1, Conv, [256, 1, 1]],
|
78 |
+
[-1, 1, Conv, [256, 3, 1]],
|
79 |
+
[-1, 1, Conv, [256, 3, 1]],
|
80 |
+
[-1, 1, Conv, [256, 3, 1]],
|
81 |
+
[-1, 1, Conv, [256, 3, 1]],
|
82 |
+
[-1, 1, Conv, [256, 3, 1]],
|
83 |
+
[-1, 1, Conv, [256, 3, 1]],
|
84 |
+
[[-1, -3, -5, -7, -8], 1, Concat, [1]],
|
85 |
+
[-1, 1, Conv, [640, 1, 1]], # 66
|
86 |
+
[[-1, -11], 1, Shortcut, [1]], # 67
|
87 |
+
|
88 |
+
[-1, 1, DownC, [960]], # 68-P5/32
|
89 |
+
[-1, 1, Conv, [384, 1, 1]],
|
90 |
+
[-2, 1, Conv, [384, 1, 1]],
|
91 |
+
[-1, 1, Conv, [384, 3, 1]],
|
92 |
+
[-1, 1, Conv, [384, 3, 1]],
|
93 |
+
[-1, 1, Conv, [384, 3, 1]],
|
94 |
+
[-1, 1, Conv, [384, 3, 1]],
|
95 |
+
[-1, 1, Conv, [384, 3, 1]],
|
96 |
+
[-1, 1, Conv, [384, 3, 1]],
|
97 |
+
[[-1, -3, -5, -7, -8], 1, Concat, [1]],
|
98 |
+
[-1, 1, Conv, [960, 1, 1]], # 78
|
99 |
+
[-11, 1, Conv, [384, 1, 1]],
|
100 |
+
[-12, 1, Conv, [384, 1, 1]],
|
101 |
+
[-1, 1, Conv, [384, 3, 1]],
|
102 |
+
[-1, 1, Conv, [384, 3, 1]],
|
103 |
+
[-1, 1, Conv, [384, 3, 1]],
|
104 |
+
[-1, 1, Conv, [384, 3, 1]],
|
105 |
+
[-1, 1, Conv, [384, 3, 1]],
|
106 |
+
[-1, 1, Conv, [384, 3, 1]],
|
107 |
+
[[-1, -3, -5, -7, -8], 1, Concat, [1]],
|
108 |
+
[-1, 1, Conv, [960, 1, 1]], # 88
|
109 |
+
[[-1, -11], 1, Shortcut, [1]], # 89
|
110 |
+
|
111 |
+
[-1, 1, DownC, [1280]], # 90-P6/64
|
112 |
+
[-1, 1, Conv, [512, 1, 1]],
|
113 |
+
[-2, 1, Conv, [512, 1, 1]],
|
114 |
+
[-1, 1, Conv, [512, 3, 1]],
|
115 |
+
[-1, 1, Conv, [512, 3, 1]],
|
116 |
+
[-1, 1, Conv, [512, 3, 1]],
|
117 |
+
[-1, 1, Conv, [512, 3, 1]],
|
118 |
+
[-1, 1, Conv, [512, 3, 1]],
|
119 |
+
[-1, 1, Conv, [512, 3, 1]],
|
120 |
+
[[-1, -3, -5, -7, -8], 1, Concat, [1]],
|
121 |
+
[-1, 1, Conv, [1280, 1, 1]], # 100
|
122 |
+
[-11, 1, Conv, [512, 1, 1]],
|
123 |
+
[-12, 1, Conv, [512, 1, 1]],
|
124 |
+
[-1, 1, Conv, [512, 3, 1]],
|
125 |
+
[-1, 1, Conv, [512, 3, 1]],
|
126 |
+
[-1, 1, Conv, [512, 3, 1]],
|
127 |
+
[-1, 1, Conv, [512, 3, 1]],
|
128 |
+
[-1, 1, Conv, [512, 3, 1]],
|
129 |
+
[-1, 1, Conv, [512, 3, 1]],
|
130 |
+
[[-1, -3, -5, -7, -8], 1, Concat, [1]],
|
131 |
+
[-1, 1, Conv, [1280, 1, 1]], # 110
|
132 |
+
[[-1, -11], 1, Shortcut, [1]], # 111
|
133 |
+
]
|
134 |
+
|
135 |
+
# yolov7 head
|
136 |
+
head:
|
137 |
+
[[-1, 1, SPPCSPC, [640]], # 112
|
138 |
+
|
139 |
+
[-1, 1, Conv, [480, 1, 1]],
|
140 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
141 |
+
[89, 1, Conv, [480, 1, 1]], # route backbone P5
|
142 |
+
[[-1, -2], 1, Concat, [1]],
|
143 |
+
|
144 |
+
[-1, 1, Conv, [384, 1, 1]],
|
145 |
+
[-2, 1, Conv, [384, 1, 1]],
|
146 |
+
[-1, 1, Conv, [192, 3, 1]],
|
147 |
+
[-1, 1, Conv, [192, 3, 1]],
|
148 |
+
[-1, 1, Conv, [192, 3, 1]],
|
149 |
+
[-1, 1, Conv, [192, 3, 1]],
|
150 |
+
[-1, 1, Conv, [192, 3, 1]],
|
151 |
+
[-1, 1, Conv, [192, 3, 1]],
|
152 |
+
[[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
|
153 |
+
[-1, 1, Conv, [480, 1, 1]], # 126
|
154 |
+
[-11, 1, Conv, [384, 1, 1]],
|
155 |
+
[-12, 1, Conv, [384, 1, 1]],
|
156 |
+
[-1, 1, Conv, [192, 3, 1]],
|
157 |
+
[-1, 1, Conv, [192, 3, 1]],
|
158 |
+
[-1, 1, Conv, [192, 3, 1]],
|
159 |
+
[-1, 1, Conv, [192, 3, 1]],
|
160 |
+
[-1, 1, Conv, [192, 3, 1]],
|
161 |
+
[-1, 1, Conv, [192, 3, 1]],
|
162 |
+
[[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
|
163 |
+
[-1, 1, Conv, [480, 1, 1]], # 136
|
164 |
+
[[-1, -11], 1, Shortcut, [1]], # 137
|
165 |
+
|
166 |
+
[-1, 1, Conv, [320, 1, 1]],
|
167 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
168 |
+
[67, 1, Conv, [320, 1, 1]], # route backbone P4
|
169 |
+
[[-1, -2], 1, Concat, [1]],
|
170 |
+
|
171 |
+
[-1, 1, Conv, [256, 1, 1]],
|
172 |
+
[-2, 1, Conv, [256, 1, 1]],
|
173 |
+
[-1, 1, Conv, [128, 3, 1]],
|
174 |
+
[-1, 1, Conv, [128, 3, 1]],
|
175 |
+
[-1, 1, Conv, [128, 3, 1]],
|
176 |
+
[-1, 1, Conv, [128, 3, 1]],
|
177 |
+
[-1, 1, Conv, [128, 3, 1]],
|
178 |
+
[-1, 1, Conv, [128, 3, 1]],
|
179 |
+
[[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
|
180 |
+
[-1, 1, Conv, [320, 1, 1]], # 151
|
181 |
+
[-11, 1, Conv, [256, 1, 1]],
|
182 |
+
[-12, 1, Conv, [256, 1, 1]],
|
183 |
+
[-1, 1, Conv, [128, 3, 1]],
|
184 |
+
[-1, 1, Conv, [128, 3, 1]],
|
185 |
+
[-1, 1, Conv, [128, 3, 1]],
|
186 |
+
[-1, 1, Conv, [128, 3, 1]],
|
187 |
+
[-1, 1, Conv, [128, 3, 1]],
|
188 |
+
[-1, 1, Conv, [128, 3, 1]],
|
189 |
+
[[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
|
190 |
+
[-1, 1, Conv, [320, 1, 1]], # 161
|
191 |
+
[[-1, -11], 1, Shortcut, [1]], # 162
|
192 |
+
|
193 |
+
[-1, 1, Conv, [160, 1, 1]],
|
194 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
195 |
+
[45, 1, Conv, [160, 1, 1]], # route backbone P3
|
196 |
+
[[-1, -2], 1, Concat, [1]],
|
197 |
+
|
198 |
+
[-1, 1, Conv, [128, 1, 1]],
|
199 |
+
[-2, 1, Conv, [128, 1, 1]],
|
200 |
+
[-1, 1, Conv, [64, 3, 1]],
|
201 |
+
[-1, 1, Conv, [64, 3, 1]],
|
202 |
+
[-1, 1, Conv, [64, 3, 1]],
|
203 |
+
[-1, 1, Conv, [64, 3, 1]],
|
204 |
+
[-1, 1, Conv, [64, 3, 1]],
|
205 |
+
[-1, 1, Conv, [64, 3, 1]],
|
206 |
+
[[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
|
207 |
+
[-1, 1, Conv, [160, 1, 1]], # 176
|
208 |
+
[-11, 1, Conv, [128, 1, 1]],
|
209 |
+
[-12, 1, Conv, [128, 1, 1]],
|
210 |
+
[-1, 1, Conv, [64, 3, 1]],
|
211 |
+
[-1, 1, Conv, [64, 3, 1]],
|
212 |
+
[-1, 1, Conv, [64, 3, 1]],
|
213 |
+
[-1, 1, Conv, [64, 3, 1]],
|
214 |
+
[-1, 1, Conv, [64, 3, 1]],
|
215 |
+
[-1, 1, Conv, [64, 3, 1]],
|
216 |
+
[[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
|
217 |
+
[-1, 1, Conv, [160, 1, 1]], # 186
|
218 |
+
[[-1, -11], 1, Shortcut, [1]], # 187
|
219 |
+
|
220 |
+
[-1, 1, DownC, [320]],
|
221 |
+
[[-1, 162], 1, Concat, [1]],
|
222 |
+
|
223 |
+
[-1, 1, Conv, [256, 1, 1]],
|
224 |
+
[-2, 1, Conv, [256, 1, 1]],
|
225 |
+
[-1, 1, Conv, [128, 3, 1]],
|
226 |
+
[-1, 1, Conv, [128, 3, 1]],
|
227 |
+
[-1, 1, Conv, [128, 3, 1]],
|
228 |
+
[-1, 1, Conv, [128, 3, 1]],
|
229 |
+
[-1, 1, Conv, [128, 3, 1]],
|
230 |
+
[-1, 1, Conv, [128, 3, 1]],
|
231 |
+
[[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
|
232 |
+
[-1, 1, Conv, [320, 1, 1]], # 199
|
233 |
+
[-11, 1, Conv, [256, 1, 1]],
|
234 |
+
[-12, 1, Conv, [256, 1, 1]],
|
235 |
+
[-1, 1, Conv, [128, 3, 1]],
|
236 |
+
[-1, 1, Conv, [128, 3, 1]],
|
237 |
+
[-1, 1, Conv, [128, 3, 1]],
|
238 |
+
[-1, 1, Conv, [128, 3, 1]],
|
239 |
+
[-1, 1, Conv, [128, 3, 1]],
|
240 |
+
[-1, 1, Conv, [128, 3, 1]],
|
241 |
+
[[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
|
242 |
+
[-1, 1, Conv, [320, 1, 1]], # 209
|
243 |
+
[[-1, -11], 1, Shortcut, [1]], # 210
|
244 |
+
|
245 |
+
[-1, 1, DownC, [480]],
|
246 |
+
[[-1, 137], 1, Concat, [1]],
|
247 |
+
|
248 |
+
[-1, 1, Conv, [384, 1, 1]],
|
249 |
+
[-2, 1, Conv, [384, 1, 1]],
|
250 |
+
[-1, 1, Conv, [192, 3, 1]],
|
251 |
+
[-1, 1, Conv, [192, 3, 1]],
|
252 |
+
[-1, 1, Conv, [192, 3, 1]],
|
253 |
+
[-1, 1, Conv, [192, 3, 1]],
|
254 |
+
[-1, 1, Conv, [192, 3, 1]],
|
255 |
+
[-1, 1, Conv, [192, 3, 1]],
|
256 |
+
[[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
|
257 |
+
[-1, 1, Conv, [480, 1, 1]], # 222
|
258 |
+
[-11, 1, Conv, [384, 1, 1]],
|
259 |
+
[-12, 1, Conv, [384, 1, 1]],
|
260 |
+
[-1, 1, Conv, [192, 3, 1]],
|
261 |
+
[-1, 1, Conv, [192, 3, 1]],
|
262 |
+
[-1, 1, Conv, [192, 3, 1]],
|
263 |
+
[-1, 1, Conv, [192, 3, 1]],
|
264 |
+
[-1, 1, Conv, [192, 3, 1]],
|
265 |
+
[-1, 1, Conv, [192, 3, 1]],
|
266 |
+
[[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
|
267 |
+
[-1, 1, Conv, [480, 1, 1]], # 232
|
268 |
+
[[-1, -11], 1, Shortcut, [1]], # 233
|
269 |
+
|
270 |
+
[-1, 1, DownC, [640]],
|
271 |
+
[[-1, 112], 1, Concat, [1]],
|
272 |
+
|
273 |
+
[-1, 1, Conv, [512, 1, 1]],
|
274 |
+
[-2, 1, Conv, [512, 1, 1]],
|
275 |
+
[-1, 1, Conv, [256, 3, 1]],
|
276 |
+
[-1, 1, Conv, [256, 3, 1]],
|
277 |
+
[-1, 1, Conv, [256, 3, 1]],
|
278 |
+
[-1, 1, Conv, [256, 3, 1]],
|
279 |
+
[-1, 1, Conv, [256, 3, 1]],
|
280 |
+
[-1, 1, Conv, [256, 3, 1]],
|
281 |
+
[[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
|
282 |
+
[-1, 1, Conv, [640, 1, 1]], # 245
|
283 |
+
[-11, 1, Conv, [512, 1, 1]],
|
284 |
+
[-12, 1, Conv, [512, 1, 1]],
|
285 |
+
[-1, 1, Conv, [256, 3, 1]],
|
286 |
+
[-1, 1, Conv, [256, 3, 1]],
|
287 |
+
[-1, 1, Conv, [256, 3, 1]],
|
288 |
+
[-1, 1, Conv, [256, 3, 1]],
|
289 |
+
[-1, 1, Conv, [256, 3, 1]],
|
290 |
+
[-1, 1, Conv, [256, 3, 1]],
|
291 |
+
[[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
|
292 |
+
[-1, 1, Conv, [640, 1, 1]], # 255
|
293 |
+
[[-1, -11], 1, Shortcut, [1]], # 256
|
294 |
+
|
295 |
+
[187, 1, Conv, [320, 3, 1]],
|
296 |
+
[210, 1, Conv, [640, 3, 1]],
|
297 |
+
[233, 1, Conv, [960, 3, 1]],
|
298 |
+
[256, 1, Conv, [1280, 3, 1]],
|
299 |
+
|
300 |
+
[186, 1, Conv, [320, 3, 1]],
|
301 |
+
[161, 1, Conv, [640, 3, 1]],
|
302 |
+
[136, 1, Conv, [960, 3, 1]],
|
303 |
+
[112, 1, Conv, [1280, 3, 1]],
|
304 |
+
|
305 |
+
[[257,258,259,260,261,262,263,264], 1, IAuxDetect, [nc, anchors]], # Detect(P3, P4, P5, P6)
|
306 |
+
]
|
cfg/training/yolov7-tiny.yaml
ADDED
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# parameters
|
2 |
+
nc: 80 # number of classes
|
3 |
+
depth_multiple: 1.0 # model depth multiple
|
4 |
+
width_multiple: 1.0 # layer channel multiple
|
5 |
+
|
6 |
+
# anchors
|
7 |
+
anchors:
|
8 |
+
- [10,13, 16,30, 33,23] # P3/8
|
9 |
+
- [30,61, 62,45, 59,119] # P4/16
|
10 |
+
- [116,90, 156,198, 373,326] # P5/32
|
11 |
+
|
12 |
+
# yolov7-tiny backbone
|
13 |
+
backbone:
|
14 |
+
# [from, number, module, args] c2, k=1, s=1, p=None, g=1, act=True
|
15 |
+
[[-1, 1, Conv, [32, 3, 2, None, 1, nn.LeakyReLU(0.1)]], # 0-P1/2
|
16 |
+
|
17 |
+
[-1, 1, Conv, [64, 3, 2, None, 1, nn.LeakyReLU(0.1)]], # 1-P2/4
|
18 |
+
|
19 |
+
[-1, 1, Conv, [32, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
|
20 |
+
[-2, 1, Conv, [32, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
|
21 |
+
[-1, 1, Conv, [32, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
|
22 |
+
[-1, 1, Conv, [32, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
|
23 |
+
[[-1, -2, -3, -4], 1, Concat, [1]],
|
24 |
+
[-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # 7
|
25 |
+
|
26 |
+
[-1, 1, MP, []], # 8-P3/8
|
27 |
+
[-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
|
28 |
+
[-2, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
|
29 |
+
[-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
|
30 |
+
[-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
|
31 |
+
[[-1, -2, -3, -4], 1, Concat, [1]],
|
32 |
+
[-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # 14
|
33 |
+
|
34 |
+
[-1, 1, MP, []], # 15-P4/16
|
35 |
+
[-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
|
36 |
+
[-2, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
|
37 |
+
[-1, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
|
38 |
+
[-1, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
|
39 |
+
[[-1, -2, -3, -4], 1, Concat, [1]],
|
40 |
+
[-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # 21
|
41 |
+
|
42 |
+
[-1, 1, MP, []], # 22-P5/32
|
43 |
+
[-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
|
44 |
+
[-2, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
|
45 |
+
[-1, 1, Conv, [256, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
|
46 |
+
[-1, 1, Conv, [256, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
|
47 |
+
[[-1, -2, -3, -4], 1, Concat, [1]],
|
48 |
+
[-1, 1, Conv, [512, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # 28
|
49 |
+
]
|
50 |
+
|
51 |
+
# yolov7-tiny head
|
52 |
+
head:
|
53 |
+
[[-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
|
54 |
+
[-2, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
|
55 |
+
[-1, 1, SP, [5]],
|
56 |
+
[-2, 1, SP, [9]],
|
57 |
+
[-3, 1, SP, [13]],
|
58 |
+
[[-1, -2, -3, -4], 1, Concat, [1]],
|
59 |
+
[-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
|
60 |
+
[[-1, -7], 1, Concat, [1]],
|
61 |
+
[-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # 37
|
62 |
+
|
63 |
+
[-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
|
64 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
65 |
+
[21, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # route backbone P4
|
66 |
+
[[-1, -2], 1, Concat, [1]],
|
67 |
+
|
68 |
+
[-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
|
69 |
+
[-2, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
|
70 |
+
[-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
|
71 |
+
[-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
|
72 |
+
[[-1, -2, -3, -4], 1, Concat, [1]],
|
73 |
+
[-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # 47
|
74 |
+
|
75 |
+
[-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
|
76 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
77 |
+
[14, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # route backbone P3
|
78 |
+
[[-1, -2], 1, Concat, [1]],
|
79 |
+
|
80 |
+
[-1, 1, Conv, [32, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
|
81 |
+
[-2, 1, Conv, [32, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
|
82 |
+
[-1, 1, Conv, [32, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
|
83 |
+
[-1, 1, Conv, [32, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
|
84 |
+
[[-1, -2, -3, -4], 1, Concat, [1]],
|
85 |
+
[-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # 57
|
86 |
+
|
87 |
+
[-1, 1, Conv, [128, 3, 2, None, 1, nn.LeakyReLU(0.1)]],
|
88 |
+
[[-1, 47], 1, Concat, [1]],
|
89 |
+
|
90 |
+
[-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
|
91 |
+
[-2, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
|
92 |
+
[-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
|
93 |
+
[-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
|
94 |
+
[[-1, -2, -3, -4], 1, Concat, [1]],
|
95 |
+
[-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # 65
|
96 |
+
|
97 |
+
[-1, 1, Conv, [256, 3, 2, None, 1, nn.LeakyReLU(0.1)]],
|
98 |
+
[[-1, 37], 1, Concat, [1]],
|
99 |
+
|
100 |
+
[-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
|
101 |
+
[-2, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
|
102 |
+
[-1, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
|
103 |
+
[-1, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
|
104 |
+
[[-1, -2, -3, -4], 1, Concat, [1]],
|
105 |
+
[-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # 73
|
106 |
+
|
107 |
+
[57, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
|
108 |
+
[65, 1, Conv, [256, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
|
109 |
+
[73, 1, Conv, [512, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
|
110 |
+
|
111 |
+
[[74,75,76], 1, IDetect, [nc, anchors]], # Detect(P3, P4, P5)
|
112 |
+
]
|
cfg/training/yolov7-w6.yaml
ADDED
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# parameters
|
2 |
+
nc: 80 # number of classes
|
3 |
+
depth_multiple: 1.0 # model depth multiple
|
4 |
+
width_multiple: 1.0 # layer channel multiple
|
5 |
+
|
6 |
+
# anchors
|
7 |
+
anchors:
|
8 |
+
- [ 19,27, 44,40, 38,94 ] # P3/8
|
9 |
+
- [ 96,68, 86,152, 180,137 ] # P4/16
|
10 |
+
- [ 140,301, 303,264, 238,542 ] # P5/32
|
11 |
+
- [ 436,615, 739,380, 925,792 ] # P6/64
|
12 |
+
|
13 |
+
# yolov7 backbone
|
14 |
+
backbone:
|
15 |
+
# [from, number, module, args]
|
16 |
+
[[-1, 1, ReOrg, []], # 0
|
17 |
+
[-1, 1, Conv, [64, 3, 1]], # 1-P1/2
|
18 |
+
|
19 |
+
[-1, 1, Conv, [128, 3, 2]], # 2-P2/4
|
20 |
+
[-1, 1, Conv, [64, 1, 1]],
|
21 |
+
[-2, 1, Conv, [64, 1, 1]],
|
22 |
+
[-1, 1, Conv, [64, 3, 1]],
|
23 |
+
[-1, 1, Conv, [64, 3, 1]],
|
24 |
+
[-1, 1, Conv, [64, 3, 1]],
|
25 |
+
[-1, 1, Conv, [64, 3, 1]],
|
26 |
+
[[-1, -3, -5, -6], 1, Concat, [1]],
|
27 |
+
[-1, 1, Conv, [128, 1, 1]], # 10
|
28 |
+
|
29 |
+
[-1, 1, Conv, [256, 3, 2]], # 11-P3/8
|
30 |
+
[-1, 1, Conv, [128, 1, 1]],
|
31 |
+
[-2, 1, Conv, [128, 1, 1]],
|
32 |
+
[-1, 1, Conv, [128, 3, 1]],
|
33 |
+
[-1, 1, Conv, [128, 3, 1]],
|
34 |
+
[-1, 1, Conv, [128, 3, 1]],
|
35 |
+
[-1, 1, Conv, [128, 3, 1]],
|
36 |
+
[[-1, -3, -5, -6], 1, Concat, [1]],
|
37 |
+
[-1, 1, Conv, [256, 1, 1]], # 19
|
38 |
+
|
39 |
+
[-1, 1, Conv, [512, 3, 2]], # 20-P4/16
|
40 |
+
[-1, 1, Conv, [256, 1, 1]],
|
41 |
+
[-2, 1, Conv, [256, 1, 1]],
|
42 |
+
[-1, 1, Conv, [256, 3, 1]],
|
43 |
+
[-1, 1, Conv, [256, 3, 1]],
|
44 |
+
[-1, 1, Conv, [256, 3, 1]],
|
45 |
+
[-1, 1, Conv, [256, 3, 1]],
|
46 |
+
[[-1, -3, -5, -6], 1, Concat, [1]],
|
47 |
+
[-1, 1, Conv, [512, 1, 1]], # 28
|
48 |
+
|
49 |
+
[-1, 1, Conv, [768, 3, 2]], # 29-P5/32
|
50 |
+
[-1, 1, Conv, [384, 1, 1]],
|
51 |
+
[-2, 1, Conv, [384, 1, 1]],
|
52 |
+
[-1, 1, Conv, [384, 3, 1]],
|
53 |
+
[-1, 1, Conv, [384, 3, 1]],
|
54 |
+
[-1, 1, Conv, [384, 3, 1]],
|
55 |
+
[-1, 1, Conv, [384, 3, 1]],
|
56 |
+
[[-1, -3, -5, -6], 1, Concat, [1]],
|
57 |
+
[-1, 1, Conv, [768, 1, 1]], # 37
|
58 |
+
|
59 |
+
[-1, 1, Conv, [1024, 3, 2]], # 38-P6/64
|
60 |
+
[-1, 1, Conv, [512, 1, 1]],
|
61 |
+
[-2, 1, Conv, [512, 1, 1]],
|
62 |
+
[-1, 1, Conv, [512, 3, 1]],
|
63 |
+
[-1, 1, Conv, [512, 3, 1]],
|
64 |
+
[-1, 1, Conv, [512, 3, 1]],
|
65 |
+
[-1, 1, Conv, [512, 3, 1]],
|
66 |
+
[[-1, -3, -5, -6], 1, Concat, [1]],
|
67 |
+
[-1, 1, Conv, [1024, 1, 1]], # 46
|
68 |
+
]
|
69 |
+
|
70 |
+
# yolov7 head
|
71 |
+
head:
|
72 |
+
[[-1, 1, SPPCSPC, [512]], # 47
|
73 |
+
|
74 |
+
[-1, 1, Conv, [384, 1, 1]],
|
75 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
76 |
+
[37, 1, Conv, [384, 1, 1]], # route backbone P5
|
77 |
+
[[-1, -2], 1, Concat, [1]],
|
78 |
+
|
79 |
+
[-1, 1, Conv, [384, 1, 1]],
|
80 |
+
[-2, 1, Conv, [384, 1, 1]],
|
81 |
+
[-1, 1, Conv, [192, 3, 1]],
|
82 |
+
[-1, 1, Conv, [192, 3, 1]],
|
83 |
+
[-1, 1, Conv, [192, 3, 1]],
|
84 |
+
[-1, 1, Conv, [192, 3, 1]],
|
85 |
+
[[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
|
86 |
+
[-1, 1, Conv, [384, 1, 1]], # 59
|
87 |
+
|
88 |
+
[-1, 1, Conv, [256, 1, 1]],
|
89 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
90 |
+
[28, 1, Conv, [256, 1, 1]], # route backbone P4
|
91 |
+
[[-1, -2], 1, Concat, [1]],
|
92 |
+
|
93 |
+
[-1, 1, Conv, [256, 1, 1]],
|
94 |
+
[-2, 1, Conv, [256, 1, 1]],
|
95 |
+
[-1, 1, Conv, [128, 3, 1]],
|
96 |
+
[-1, 1, Conv, [128, 3, 1]],
|
97 |
+
[-1, 1, Conv, [128, 3, 1]],
|
98 |
+
[-1, 1, Conv, [128, 3, 1]],
|
99 |
+
[[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
|
100 |
+
[-1, 1, Conv, [256, 1, 1]], # 71
|
101 |
+
|
102 |
+
[-1, 1, Conv, [128, 1, 1]],
|
103 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
104 |
+
[19, 1, Conv, [128, 1, 1]], # route backbone P3
|
105 |
+
[[-1, -2], 1, Concat, [1]],
|
106 |
+
|
107 |
+
[-1, 1, Conv, [128, 1, 1]],
|
108 |
+
[-2, 1, Conv, [128, 1, 1]],
|
109 |
+
[-1, 1, Conv, [64, 3, 1]],
|
110 |
+
[-1, 1, Conv, [64, 3, 1]],
|
111 |
+
[-1, 1, Conv, [64, 3, 1]],
|
112 |
+
[-1, 1, Conv, [64, 3, 1]],
|
113 |
+
[[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
|
114 |
+
[-1, 1, Conv, [128, 1, 1]], # 83
|
115 |
+
|
116 |
+
[-1, 1, Conv, [256, 3, 2]],
|
117 |
+
[[-1, 71], 1, Concat, [1]], # cat
|
118 |
+
|
119 |
+
[-1, 1, Conv, [256, 1, 1]],
|
120 |
+
[-2, 1, Conv, [256, 1, 1]],
|
121 |
+
[-1, 1, Conv, [128, 3, 1]],
|
122 |
+
[-1, 1, Conv, [128, 3, 1]],
|
123 |
+
[-1, 1, Conv, [128, 3, 1]],
|
124 |
+
[-1, 1, Conv, [128, 3, 1]],
|
125 |
+
[[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
|
126 |
+
[-1, 1, Conv, [256, 1, 1]], # 93
|
127 |
+
|
128 |
+
[-1, 1, Conv, [384, 3, 2]],
|
129 |
+
[[-1, 59], 1, Concat, [1]], # cat
|
130 |
+
|
131 |
+
[-1, 1, Conv, [384, 1, 1]],
|
132 |
+
[-2, 1, Conv, [384, 1, 1]],
|
133 |
+
[-1, 1, Conv, [192, 3, 1]],
|
134 |
+
[-1, 1, Conv, [192, 3, 1]],
|
135 |
+
[-1, 1, Conv, [192, 3, 1]],
|
136 |
+
[-1, 1, Conv, [192, 3, 1]],
|
137 |
+
[[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
|
138 |
+
[-1, 1, Conv, [384, 1, 1]], # 103
|
139 |
+
|
140 |
+
[-1, 1, Conv, [512, 3, 2]],
|
141 |
+
[[-1, 47], 1, Concat, [1]], # cat
|
142 |
+
|
143 |
+
[-1, 1, Conv, [512, 1, 1]],
|
144 |
+
[-2, 1, Conv, [512, 1, 1]],
|
145 |
+
[-1, 1, Conv, [256, 3, 1]],
|
146 |
+
[-1, 1, Conv, [256, 3, 1]],
|
147 |
+
[-1, 1, Conv, [256, 3, 1]],
|
148 |
+
[-1, 1, Conv, [256, 3, 1]],
|
149 |
+
[[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
|
150 |
+
[-1, 1, Conv, [512, 1, 1]], # 113
|
151 |
+
|
152 |
+
[83, 1, Conv, [256, 3, 1]],
|
153 |
+
[93, 1, Conv, [512, 3, 1]],
|
154 |
+
[103, 1, Conv, [768, 3, 1]],
|
155 |
+
[113, 1, Conv, [1024, 3, 1]],
|
156 |
+
|
157 |
+
[83, 1, Conv, [320, 3, 1]],
|
158 |
+
[71, 1, Conv, [640, 3, 1]],
|
159 |
+
[59, 1, Conv, [960, 3, 1]],
|
160 |
+
[47, 1, Conv, [1280, 3, 1]],
|
161 |
+
|
162 |
+
[[114,115,116,117,118,119,120,121], 1, IAuxDetect, [nc, anchors]], # Detect(P3, P4, P5, P6)
|
163 |
+
]
|
cfg/training/yolov7.yaml
ADDED
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# parameters
|
2 |
+
nc: 80 # number of classes
|
3 |
+
depth_multiple: 1.0 # model depth multiple
|
4 |
+
width_multiple: 1.0 # layer channel multiple
|
5 |
+
|
6 |
+
# anchors
|
7 |
+
anchors:
|
8 |
+
- [12,16, 19,36, 40,28] # P3/8
|
9 |
+
- [36,75, 76,55, 72,146] # P4/16
|
10 |
+
- [142,110, 192,243, 459,401] # P5/32
|
11 |
+
|
12 |
+
# yolov7 backbone
|
13 |
+
backbone:
|
14 |
+
# [from, number, module, args]
|
15 |
+
[[-1, 1, Conv, [32, 3, 1]], # 0
|
16 |
+
|
17 |
+
[-1, 1, Conv, [64, 3, 2]], # 1-P1/2
|
18 |
+
[-1, 1, Conv, [64, 3, 1]],
|
19 |
+
|
20 |
+
[-1, 1, Conv, [128, 3, 2]], # 3-P2/4
|
21 |
+
[-1, 1, Conv, [64, 1, 1]],
|
22 |
+
[-2, 1, Conv, [64, 1, 1]],
|
23 |
+
[-1, 1, Conv, [64, 3, 1]],
|
24 |
+
[-1, 1, Conv, [64, 3, 1]],
|
25 |
+
[-1, 1, Conv, [64, 3, 1]],
|
26 |
+
[-1, 1, Conv, [64, 3, 1]],
|
27 |
+
[[-1, -3, -5, -6], 1, Concat, [1]],
|
28 |
+
[-1, 1, Conv, [256, 1, 1]], # 11
|
29 |
+
|
30 |
+
[-1, 1, MP, []],
|
31 |
+
[-1, 1, Conv, [128, 1, 1]],
|
32 |
+
[-3, 1, Conv, [128, 1, 1]],
|
33 |
+
[-1, 1, Conv, [128, 3, 2]],
|
34 |
+
[[-1, -3], 1, Concat, [1]], # 16-P3/8
|
35 |
+
[-1, 1, Conv, [128, 1, 1]],
|
36 |
+
[-2, 1, Conv, [128, 1, 1]],
|
37 |
+
[-1, 1, Conv, [128, 3, 1]],
|
38 |
+
[-1, 1, Conv, [128, 3, 1]],
|
39 |
+
[-1, 1, Conv, [128, 3, 1]],
|
40 |
+
[-1, 1, Conv, [128, 3, 1]],
|
41 |
+
[[-1, -3, -5, -6], 1, Concat, [1]],
|
42 |
+
[-1, 1, Conv, [512, 1, 1]], # 24
|
43 |
+
|
44 |
+
[-1, 1, MP, []],
|
45 |
+
[-1, 1, Conv, [256, 1, 1]],
|
46 |
+
[-3, 1, Conv, [256, 1, 1]],
|
47 |
+
[-1, 1, Conv, [256, 3, 2]],
|
48 |
+
[[-1, -3], 1, Concat, [1]], # 29-P4/16
|
49 |
+
[-1, 1, Conv, [256, 1, 1]],
|
50 |
+
[-2, 1, Conv, [256, 1, 1]],
|
51 |
+
[-1, 1, Conv, [256, 3, 1]],
|
52 |
+
[-1, 1, Conv, [256, 3, 1]],
|
53 |
+
[-1, 1, Conv, [256, 3, 1]],
|
54 |
+
[-1, 1, Conv, [256, 3, 1]],
|
55 |
+
[[-1, -3, -5, -6], 1, Concat, [1]],
|
56 |
+
[-1, 1, Conv, [1024, 1, 1]], # 37
|
57 |
+
|
58 |
+
[-1, 1, MP, []],
|
59 |
+
[-1, 1, Conv, [512, 1, 1]],
|
60 |
+
[-3, 1, Conv, [512, 1, 1]],
|
61 |
+
[-1, 1, Conv, [512, 3, 2]],
|
62 |
+
[[-1, -3], 1, Concat, [1]], # 42-P5/32
|
63 |
+
[-1, 1, Conv, [256, 1, 1]],
|
64 |
+
[-2, 1, Conv, [256, 1, 1]],
|
65 |
+
[-1, 1, Conv, [256, 3, 1]],
|
66 |
+
[-1, 1, Conv, [256, 3, 1]],
|
67 |
+
[-1, 1, Conv, [256, 3, 1]],
|
68 |
+
[-1, 1, Conv, [256, 3, 1]],
|
69 |
+
[[-1, -3, -5, -6], 1, Concat, [1]],
|
70 |
+
[-1, 1, Conv, [1024, 1, 1]], # 50
|
71 |
+
]
|
72 |
+
|
73 |
+
# yolov7 head
|
74 |
+
head:
|
75 |
+
[[-1, 1, SPPCSPC, [512]], # 51
|
76 |
+
|
77 |
+
[-1, 1, Conv, [256, 1, 1]],
|
78 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
79 |
+
[37, 1, Conv, [256, 1, 1]], # route backbone P4
|
80 |
+
[[-1, -2], 1, Concat, [1]],
|
81 |
+
|
82 |
+
[-1, 1, Conv, [256, 1, 1]],
|
83 |
+
[-2, 1, Conv, [256, 1, 1]],
|
84 |
+
[-1, 1, Conv, [128, 3, 1]],
|
85 |
+
[-1, 1, Conv, [128, 3, 1]],
|
86 |
+
[-1, 1, Conv, [128, 3, 1]],
|
87 |
+
[-1, 1, Conv, [128, 3, 1]],
|
88 |
+
[[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
|
89 |
+
[-1, 1, Conv, [256, 1, 1]], # 63
|
90 |
+
|
91 |
+
[-1, 1, Conv, [128, 1, 1]],
|
92 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
93 |
+
[24, 1, Conv, [128, 1, 1]], # route backbone P3
|
94 |
+
[[-1, -2], 1, Concat, [1]],
|
95 |
+
|
96 |
+
[-1, 1, Conv, [128, 1, 1]],
|
97 |
+
[-2, 1, Conv, [128, 1, 1]],
|
98 |
+
[-1, 1, Conv, [64, 3, 1]],
|
99 |
+
[-1, 1, Conv, [64, 3, 1]],
|
100 |
+
[-1, 1, Conv, [64, 3, 1]],
|
101 |
+
[-1, 1, Conv, [64, 3, 1]],
|
102 |
+
[[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
|
103 |
+
[-1, 1, Conv, [128, 1, 1]], # 75
|
104 |
+
|
105 |
+
[-1, 1, MP, []],
|
106 |
+
[-1, 1, Conv, [128, 1, 1]],
|
107 |
+
[-3, 1, Conv, [128, 1, 1]],
|
108 |
+
[-1, 1, Conv, [128, 3, 2]],
|
109 |
+
[[-1, -3, 63], 1, Concat, [1]],
|
110 |
+
|
111 |
+
[-1, 1, Conv, [256, 1, 1]],
|
112 |
+
[-2, 1, Conv, [256, 1, 1]],
|
113 |
+
[-1, 1, Conv, [128, 3, 1]],
|
114 |
+
[-1, 1, Conv, [128, 3, 1]],
|
115 |
+
[-1, 1, Conv, [128, 3, 1]],
|
116 |
+
[-1, 1, Conv, [128, 3, 1]],
|
117 |
+
[[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
|
118 |
+
[-1, 1, Conv, [256, 1, 1]], # 88
|
119 |
+
|
120 |
+
[-1, 1, MP, []],
|
121 |
+
[-1, 1, Conv, [256, 1, 1]],
|
122 |
+
[-3, 1, Conv, [256, 1, 1]],
|
123 |
+
[-1, 1, Conv, [256, 3, 2]],
|
124 |
+
[[-1, -3, 51], 1, Concat, [1]],
|
125 |
+
|
126 |
+
[-1, 1, Conv, [512, 1, 1]],
|
127 |
+
[-2, 1, Conv, [512, 1, 1]],
|
128 |
+
[-1, 1, Conv, [256, 3, 1]],
|
129 |
+
[-1, 1, Conv, [256, 3, 1]],
|
130 |
+
[-1, 1, Conv, [256, 3, 1]],
|
131 |
+
[-1, 1, Conv, [256, 3, 1]],
|
132 |
+
[[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
|
133 |
+
[-1, 1, Conv, [512, 1, 1]], # 101
|
134 |
+
|
135 |
+
[75, 1, RepConv, [256, 3, 1]],
|
136 |
+
[88, 1, RepConv, [512, 3, 1]],
|
137 |
+
[101, 1, RepConv, [1024, 3, 1]],
|
138 |
+
|
139 |
+
[[102,103,104], 1, IDetect, [nc, anchors]], # Detect(P3, P4, P5)
|
140 |
+
]
|
cfg/training/yolov7x.yaml
ADDED
@@ -0,0 +1,156 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# parameters
|
2 |
+
nc: 80 # number of classes
|
3 |
+
depth_multiple: 1.0 # model depth multiple
|
4 |
+
width_multiple: 1.0 # layer channel multiple
|
5 |
+
|
6 |
+
# anchors
|
7 |
+
anchors:
|
8 |
+
- [12,16, 19,36, 40,28] # P3/8
|
9 |
+
- [36,75, 76,55, 72,146] # P4/16
|
10 |
+
- [142,110, 192,243, 459,401] # P5/32
|
11 |
+
|
12 |
+
# yolov7 backbone
|
13 |
+
backbone:
|
14 |
+
# [from, number, module, args]
|
15 |
+
[[-1, 1, Conv, [40, 3, 1]], # 0
|
16 |
+
|
17 |
+
[-1, 1, Conv, [80, 3, 2]], # 1-P1/2
|
18 |
+
[-1, 1, Conv, [80, 3, 1]],
|
19 |
+
|
20 |
+
[-1, 1, Conv, [160, 3, 2]], # 3-P2/4
|
21 |
+
[-1, 1, Conv, [64, 1, 1]],
|
22 |
+
[-2, 1, Conv, [64, 1, 1]],
|
23 |
+
[-1, 1, Conv, [64, 3, 1]],
|
24 |
+
[-1, 1, Conv, [64, 3, 1]],
|
25 |
+
[-1, 1, Conv, [64, 3, 1]],
|
26 |
+
[-1, 1, Conv, [64, 3, 1]],
|
27 |
+
[-1, 1, Conv, [64, 3, 1]],
|
28 |
+
[-1, 1, Conv, [64, 3, 1]],
|
29 |
+
[[-1, -3, -5, -7, -8], 1, Concat, [1]],
|
30 |
+
[-1, 1, Conv, [320, 1, 1]], # 13
|
31 |
+
|
32 |
+
[-1, 1, MP, []],
|
33 |
+
[-1, 1, Conv, [160, 1, 1]],
|
34 |
+
[-3, 1, Conv, [160, 1, 1]],
|
35 |
+
[-1, 1, Conv, [160, 3, 2]],
|
36 |
+
[[-1, -3], 1, Concat, [1]], # 18-P3/8
|
37 |
+
[-1, 1, Conv, [128, 1, 1]],
|
38 |
+
[-2, 1, Conv, [128, 1, 1]],
|
39 |
+
[-1, 1, Conv, [128, 3, 1]],
|
40 |
+
[-1, 1, Conv, [128, 3, 1]],
|
41 |
+
[-1, 1, Conv, [128, 3, 1]],
|
42 |
+
[-1, 1, Conv, [128, 3, 1]],
|
43 |
+
[-1, 1, Conv, [128, 3, 1]],
|
44 |
+
[-1, 1, Conv, [128, 3, 1]],
|
45 |
+
[[-1, -3, -5, -7, -8], 1, Concat, [1]],
|
46 |
+
[-1, 1, Conv, [640, 1, 1]], # 28
|
47 |
+
|
48 |
+
[-1, 1, MP, []],
|
49 |
+
[-1, 1, Conv, [320, 1, 1]],
|
50 |
+
[-3, 1, Conv, [320, 1, 1]],
|
51 |
+
[-1, 1, Conv, [320, 3, 2]],
|
52 |
+
[[-1, -3], 1, Concat, [1]], # 33-P4/16
|
53 |
+
[-1, 1, Conv, [256, 1, 1]],
|
54 |
+
[-2, 1, Conv, [256, 1, 1]],
|
55 |
+
[-1, 1, Conv, [256, 3, 1]],
|
56 |
+
[-1, 1, Conv, [256, 3, 1]],
|
57 |
+
[-1, 1, Conv, [256, 3, 1]],
|
58 |
+
[-1, 1, Conv, [256, 3, 1]],
|
59 |
+
[-1, 1, Conv, [256, 3, 1]],
|
60 |
+
[-1, 1, Conv, [256, 3, 1]],
|
61 |
+
[[-1, -3, -5, -7, -8], 1, Concat, [1]],
|
62 |
+
[-1, 1, Conv, [1280, 1, 1]], # 43
|
63 |
+
|
64 |
+
[-1, 1, MP, []],
|
65 |
+
[-1, 1, Conv, [640, 1, 1]],
|
66 |
+
[-3, 1, Conv, [640, 1, 1]],
|
67 |
+
[-1, 1, Conv, [640, 3, 2]],
|
68 |
+
[[-1, -3], 1, Concat, [1]], # 48-P5/32
|
69 |
+
[-1, 1, Conv, [256, 1, 1]],
|
70 |
+
[-2, 1, Conv, [256, 1, 1]],
|
71 |
+
[-1, 1, Conv, [256, 3, 1]],
|
72 |
+
[-1, 1, Conv, [256, 3, 1]],
|
73 |
+
[-1, 1, Conv, [256, 3, 1]],
|
74 |
+
[-1, 1, Conv, [256, 3, 1]],
|
75 |
+
[-1, 1, Conv, [256, 3, 1]],
|
76 |
+
[-1, 1, Conv, [256, 3, 1]],
|
77 |
+
[[-1, -3, -5, -7, -8], 1, Concat, [1]],
|
78 |
+
[-1, 1, Conv, [1280, 1, 1]], # 58
|
79 |
+
]
|
80 |
+
|
81 |
+
# yolov7 head
|
82 |
+
head:
|
83 |
+
[[-1, 1, SPPCSPC, [640]], # 59
|
84 |
+
|
85 |
+
[-1, 1, Conv, [320, 1, 1]],
|
86 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
87 |
+
[43, 1, Conv, [320, 1, 1]], # route backbone P4
|
88 |
+
[[-1, -2], 1, Concat, [1]],
|
89 |
+
|
90 |
+
[-1, 1, Conv, [256, 1, 1]],
|
91 |
+
[-2, 1, Conv, [256, 1, 1]],
|
92 |
+
[-1, 1, Conv, [256, 3, 1]],
|
93 |
+
[-1, 1, Conv, [256, 3, 1]],
|
94 |
+
[-1, 1, Conv, [256, 3, 1]],
|
95 |
+
[-1, 1, Conv, [256, 3, 1]],
|
96 |
+
[-1, 1, Conv, [256, 3, 1]],
|
97 |
+
[-1, 1, Conv, [256, 3, 1]],
|
98 |
+
[[-1, -3, -5, -7, -8], 1, Concat, [1]],
|
99 |
+
[-1, 1, Conv, [320, 1, 1]], # 73
|
100 |
+
|
101 |
+
[-1, 1, Conv, [160, 1, 1]],
|
102 |
+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
103 |
+
[28, 1, Conv, [160, 1, 1]], # route backbone P3
|
104 |
+
[[-1, -2], 1, Concat, [1]],
|
105 |
+
|
106 |
+
[-1, 1, Conv, [128, 1, 1]],
|
107 |
+
[-2, 1, Conv, [128, 1, 1]],
|
108 |
+
[-1, 1, Conv, [128, 3, 1]],
|
109 |
+
[-1, 1, Conv, [128, 3, 1]],
|
110 |
+
[-1, 1, Conv, [128, 3, 1]],
|
111 |
+
[-1, 1, Conv, [128, 3, 1]],
|
112 |
+
[-1, 1, Conv, [128, 3, 1]],
|
113 |
+
[-1, 1, Conv, [128, 3, 1]],
|
114 |
+
[[-1, -3, -5, -7, -8], 1, Concat, [1]],
|
115 |
+
[-1, 1, Conv, [160, 1, 1]], # 87
|
116 |
+
|
117 |
+
[-1, 1, MP, []],
|
118 |
+
[-1, 1, Conv, [160, 1, 1]],
|
119 |
+
[-3, 1, Conv, [160, 1, 1]],
|
120 |
+
[-1, 1, Conv, [160, 3, 2]],
|
121 |
+
[[-1, -3, 73], 1, Concat, [1]],
|
122 |
+
|
123 |
+
[-1, 1, Conv, [256, 1, 1]],
|
124 |
+
[-2, 1, Conv, [256, 1, 1]],
|
125 |
+
[-1, 1, Conv, [256, 3, 1]],
|
126 |
+
[-1, 1, Conv, [256, 3, 1]],
|
127 |
+
[-1, 1, Conv, [256, 3, 1]],
|
128 |
+
[-1, 1, Conv, [256, 3, 1]],
|
129 |
+
[-1, 1, Conv, [256, 3, 1]],
|
130 |
+
[-1, 1, Conv, [256, 3, 1]],
|
131 |
+
[[-1, -3, -5, -7, -8], 1, Concat, [1]],
|
132 |
+
[-1, 1, Conv, [320, 1, 1]], # 102
|
133 |
+
|
134 |
+
[-1, 1, MP, []],
|
135 |
+
[-1, 1, Conv, [320, 1, 1]],
|
136 |
+
[-3, 1, Conv, [320, 1, 1]],
|
137 |
+
[-1, 1, Conv, [320, 3, 2]],
|
138 |
+
[[-1, -3, 59], 1, Concat, [1]],
|
139 |
+
|
140 |
+
[-1, 1, Conv, [512, 1, 1]],
|
141 |
+
[-2, 1, Conv, [512, 1, 1]],
|
142 |
+
[-1, 1, Conv, [512, 3, 1]],
|
143 |
+
[-1, 1, Conv, [512, 3, 1]],
|
144 |
+
[-1, 1, Conv, [512, 3, 1]],
|
145 |
+
[-1, 1, Conv, [512, 3, 1]],
|
146 |
+
[-1, 1, Conv, [512, 3, 1]],
|
147 |
+
[-1, 1, Conv, [512, 3, 1]],
|
148 |
+
[[-1, -3, -5, -7, -8], 1, Concat, [1]],
|
149 |
+
[-1, 1, Conv, [640, 1, 1]], # 117
|
150 |
+
|
151 |
+
[87, 1, Conv, [320, 3, 1]],
|
152 |
+
[102, 1, Conv, [640, 3, 1]],
|
153 |
+
[117, 1, Conv, [1280, 3, 1]],
|
154 |
+
|
155 |
+
[[118,119,120], 1, IDetect, [nc, anchors]], # Detect(P3, P4, P5)
|
156 |
+
]
|
data/coco.yaml
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# COCO 2017 dataset http://cocodataset.org
|
2 |
+
|
3 |
+
# download command/URL (optional)
|
4 |
+
download: bash ./scripts/get_coco.sh
|
5 |
+
|
6 |
+
# train and val data as 1) directory: path/images/, 2) file: path/images.txt, or 3) list: [path1/images/, path2/images/]
|
7 |
+
train: ./coco/train2017.txt # 118287 images
|
8 |
+
val: ./coco/val2017.txt # 5000 images
|
9 |
+
test: ./coco/test-dev2017.txt # 20288 of 40670 images, submit to https://competitions.codalab.org/competitions/20794
|
10 |
+
|
11 |
+
# number of classes
|
12 |
+
nc: 80
|
13 |
+
|
14 |
+
# class names
|
15 |
+
names: [ 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
|
16 |
+
'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
|
17 |
+
'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
|
18 |
+
'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
|
19 |
+
'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
|
20 |
+
'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
|
21 |
+
'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
|
22 |
+
'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
|
23 |
+
'hair drier', 'toothbrush' ]
|
data/hyp.scratch.custom.yaml
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
|
2 |
+
lrf: 0.1 # final OneCycleLR learning rate (lr0 * lrf)
|
3 |
+
momentum: 0.937 # SGD momentum/Adam beta1
|
4 |
+
weight_decay: 0.0005 # optimizer weight decay 5e-4
|
5 |
+
warmup_epochs: 3.0 # warmup epochs (fractions ok)
|
6 |
+
warmup_momentum: 0.8 # warmup initial momentum
|
7 |
+
warmup_bias_lr: 0.1 # warmup initial bias lr
|
8 |
+
box: 0.05 # box loss gain
|
9 |
+
cls: 0.3 # cls loss gain
|
10 |
+
cls_pw: 1.0 # cls BCELoss positive_weight
|
11 |
+
obj: 0.7 # obj loss gain (scale with pixels)
|
12 |
+
obj_pw: 1.0 # obj BCELoss positive_weight
|
13 |
+
iou_t: 0.20 # IoU training threshold
|
14 |
+
anchor_t: 4.0 # anchor-multiple threshold
|
15 |
+
# anchors: 3 # anchors per output layer (0 to ignore)
|
16 |
+
fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
|
17 |
+
hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
|
18 |
+
hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
|
19 |
+
hsv_v: 0.4 # image HSV-Value augmentation (fraction)
|
20 |
+
degrees: 0.0 # image rotation (+/- deg)
|
21 |
+
translate: 0.2 # image translation (+/- fraction)
|
22 |
+
scale: 0.5 # image scale (+/- gain)
|
23 |
+
shear: 0.0 # image shear (+/- deg)
|
24 |
+
perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
|
25 |
+
flipud: 0.0 # image flip up-down (probability)
|
26 |
+
fliplr: 0.5 # image flip left-right (probability)
|
27 |
+
mosaic: 1.0 # image mosaic (probability)
|
28 |
+
mixup: 0.0 # image mixup (probability)
|
29 |
+
copy_paste: 0.0 # image copy paste (probability)
|
30 |
+
paste_in: 0.0 # image copy paste (probability), use 0 for faster training
|
31 |
+
loss_ota: 1 # use ComputeLossOTA, use 0 for faster training
|
data/hyp.scratch.p5.yaml
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
|
2 |
+
lrf: 0.1 # final OneCycleLR learning rate (lr0 * lrf)
|
3 |
+
momentum: 0.937 # SGD momentum/Adam beta1
|
4 |
+
weight_decay: 0.0005 # optimizer weight decay 5e-4
|
5 |
+
warmup_epochs: 3.0 # warmup epochs (fractions ok)
|
6 |
+
warmup_momentum: 0.8 # warmup initial momentum
|
7 |
+
warmup_bias_lr: 0.1 # warmup initial bias lr
|
8 |
+
box: 0.05 # box loss gain
|
9 |
+
cls: 0.3 # cls loss gain
|
10 |
+
cls_pw: 1.0 # cls BCELoss positive_weight
|
11 |
+
obj: 0.7 # obj loss gain (scale with pixels)
|
12 |
+
obj_pw: 1.0 # obj BCELoss positive_weight
|
13 |
+
iou_t: 0.20 # IoU training threshold
|
14 |
+
anchor_t: 4.0 # anchor-multiple threshold
|
15 |
+
# anchors: 3 # anchors per output layer (0 to ignore)
|
16 |
+
fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
|
17 |
+
hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
|
18 |
+
hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
|
19 |
+
hsv_v: 0.4 # image HSV-Value augmentation (fraction)
|
20 |
+
degrees: 0.0 # image rotation (+/- deg)
|
21 |
+
translate: 0.2 # image translation (+/- fraction)
|
22 |
+
scale: 0.9 # image scale (+/- gain)
|
23 |
+
shear: 0.0 # image shear (+/- deg)
|
24 |
+
perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
|
25 |
+
flipud: 0.0 # image flip up-down (probability)
|
26 |
+
fliplr: 0.5 # image flip left-right (probability)
|
27 |
+
mosaic: 1.0 # image mosaic (probability)
|
28 |
+
mixup: 0.15 # image mixup (probability)
|
29 |
+
copy_paste: 0.0 # image copy paste (probability)
|
30 |
+
paste_in: 0.15 # image copy paste (probability), use 0 for faster training
|
31 |
+
loss_ota: 1 # use ComputeLossOTA, use 0 for faster training
|
data/hyp.scratch.p6.yaml
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
|
2 |
+
lrf: 0.2 # final OneCycleLR learning rate (lr0 * lrf)
|
3 |
+
momentum: 0.937 # SGD momentum/Adam beta1
|
4 |
+
weight_decay: 0.0005 # optimizer weight decay 5e-4
|
5 |
+
warmup_epochs: 3.0 # warmup epochs (fractions ok)
|
6 |
+
warmup_momentum: 0.8 # warmup initial momentum
|
7 |
+
warmup_bias_lr: 0.1 # warmup initial bias lr
|
8 |
+
box: 0.05 # box loss gain
|
9 |
+
cls: 0.3 # cls loss gain
|
10 |
+
cls_pw: 1.0 # cls BCELoss positive_weight
|
11 |
+
obj: 0.7 # obj loss gain (scale with pixels)
|
12 |
+
obj_pw: 1.0 # obj BCELoss positive_weight
|
13 |
+
iou_t: 0.20 # IoU training threshold
|
14 |
+
anchor_t: 4.0 # anchor-multiple threshold
|
15 |
+
# anchors: 3 # anchors per output layer (0 to ignore)
|
16 |
+
fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
|
17 |
+
hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
|
18 |
+
hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
|
19 |
+
hsv_v: 0.4 # image HSV-Value augmentation (fraction)
|
20 |
+
degrees: 0.0 # image rotation (+/- deg)
|
21 |
+
translate: 0.2 # image translation (+/- fraction)
|
22 |
+
scale: 0.9 # image scale (+/- gain)
|
23 |
+
shear: 0.0 # image shear (+/- deg)
|
24 |
+
perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
|
25 |
+
flipud: 0.0 # image flip up-down (probability)
|
26 |
+
fliplr: 0.5 # image flip left-right (probability)
|
27 |
+
mosaic: 1.0 # image mosaic (probability)
|
28 |
+
mixup: 0.15 # image mixup (probability)
|
29 |
+
copy_paste: 0.0 # image copy paste (probability)
|
30 |
+
paste_in: 0.15 # image copy paste (probability), use 0 for faster training
|
31 |
+
loss_ota: 1 # use ComputeLossOTA, use 0 for faster training
|
data/hyp.scratch.tiny.yaml
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
|
2 |
+
lrf: 0.01 # final OneCycleLR learning rate (lr0 * lrf)
|
3 |
+
momentum: 0.937 # SGD momentum/Adam beta1
|
4 |
+
weight_decay: 0.0005 # optimizer weight decay 5e-4
|
5 |
+
warmup_epochs: 3.0 # warmup epochs (fractions ok)
|
6 |
+
warmup_momentum: 0.8 # warmup initial momentum
|
7 |
+
warmup_bias_lr: 0.1 # warmup initial bias lr
|
8 |
+
box: 0.05 # box loss gain
|
9 |
+
cls: 0.5 # cls loss gain
|
10 |
+
cls_pw: 1.0 # cls BCELoss positive_weight
|
11 |
+
obj: 1.0 # obj loss gain (scale with pixels)
|
12 |
+
obj_pw: 1.0 # obj BCELoss positive_weight
|
13 |
+
iou_t: 0.20 # IoU training threshold
|
14 |
+
anchor_t: 4.0 # anchor-multiple threshold
|
15 |
+
# anchors: 3 # anchors per output layer (0 to ignore)
|
16 |
+
fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
|
17 |
+
hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
|
18 |
+
hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
|
19 |
+
hsv_v: 0.4 # image HSV-Value augmentation (fraction)
|
20 |
+
degrees: 0.0 # image rotation (+/- deg)
|
21 |
+
translate: 0.1 # image translation (+/- fraction)
|
22 |
+
scale: 0.5 # image scale (+/- gain)
|
23 |
+
shear: 0.0 # image shear (+/- deg)
|
24 |
+
perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
|
25 |
+
flipud: 0.0 # image flip up-down (probability)
|
26 |
+
fliplr: 0.5 # image flip left-right (probability)
|
27 |
+
mosaic: 1.0 # image mosaic (probability)
|
28 |
+
mixup: 0.05 # image mixup (probability)
|
29 |
+
copy_paste: 0.0 # image copy paste (probability)
|
30 |
+
paste_in: 0.05 # image copy paste (probability), use 0 for faster training
|
31 |
+
loss_ota: 1 # use ComputeLossOTA, use 0 for faster training
|
deploy/triton-inference-server/README.md
ADDED
@@ -0,0 +1,164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv7 on Triton Inference Server
|
2 |
+
|
3 |
+
Instructions to deploy YOLOv7 as TensorRT engine to [Triton Inference Server](https://github.com/NVIDIA/triton-inference-server).
|
4 |
+
|
5 |
+
Triton Inference Server takes care of model deployment with many out-of-the-box benefits, like a GRPC and HTTP interface, automatic scheduling on multiple GPUs, shared memory (even on GPU), dynamic server-side batching, health metrics and memory resource management.
|
6 |
+
|
7 |
+
There are no additional dependencies needed to run this deployment, except a working docker daemon with GPU support.
|
8 |
+
|
9 |
+
## Export TensorRT
|
10 |
+
|
11 |
+
See https://github.com/WongKinYiu/yolov7#export for more info.
|
12 |
+
|
13 |
+
```bash
|
14 |
+
#install onnx-simplifier not listed in general yolov7 requirements.txt
|
15 |
+
pip3 install onnx-simplifier
|
16 |
+
|
17 |
+
# Pytorch Yolov7 -> ONNX with grid, EfficientNMS plugin and dynamic batch size
|
18 |
+
python export.py --weights ./yolov7.pt --grid --end2end --dynamic-batch --simplify --topk-all 100 --iou-thres 0.65 --conf-thres 0.35 --img-size 640 640
|
19 |
+
# ONNX -> TensorRT with trtexec and docker
|
20 |
+
docker run -it --rm --gpus=all nvcr.io/nvidia/tensorrt:22.06-py3
|
21 |
+
# Copy onnx -> container: docker cp yolov7.onnx <container-id>:/workspace/
|
22 |
+
# Export with FP16 precision, min batch 1, opt batch 8 and max batch 8
|
23 |
+
./tensorrt/bin/trtexec --onnx=yolov7.onnx --minShapes=images:1x3x640x640 --optShapes=images:8x3x640x640 --maxShapes=images:8x3x640x640 --fp16 --workspace=4096 --saveEngine=yolov7-fp16-1x8x8.engine --timingCacheFile=timing.cache
|
24 |
+
# Test engine
|
25 |
+
./tensorrt/bin/trtexec --loadEngine=yolov7-fp16-1x8x8.engine
|
26 |
+
# Copy engine -> host: docker cp <container-id>:/workspace/yolov7-fp16-1x8x8.engine .
|
27 |
+
```
|
28 |
+
|
29 |
+
Example output of test with RTX 3090.
|
30 |
+
|
31 |
+
```
|
32 |
+
[I] === Performance summary ===
|
33 |
+
[I] Throughput: 73.4985 qps
|
34 |
+
[I] Latency: min = 14.8578 ms, max = 15.8344 ms, mean = 15.07 ms, median = 15.0422 ms, percentile(99%) = 15.7443 ms
|
35 |
+
[I] End-to-End Host Latency: min = 25.8715 ms, max = 28.4102 ms, mean = 26.672 ms, median = 26.6082 ms, percentile(99%) = 27.8314 ms
|
36 |
+
[I] Enqueue Time: min = 0.793701 ms, max = 1.47144 ms, mean = 1.2008 ms, median = 1.28644 ms, percentile(99%) = 1.38965 ms
|
37 |
+
[I] H2D Latency: min = 1.50073 ms, max = 1.52454 ms, mean = 1.51225 ms, median = 1.51404 ms, percentile(99%) = 1.51941 ms
|
38 |
+
[I] GPU Compute Time: min = 13.3386 ms, max = 14.3186 ms, mean = 13.5448 ms, median = 13.5178 ms, percentile(99%) = 14.2151 ms
|
39 |
+
[I] D2H Latency: min = 0.00878906 ms, max = 0.0172729 ms, mean = 0.0128844 ms, median = 0.0125732 ms, percentile(99%) = 0.0166016 ms
|
40 |
+
[I] Total Host Walltime: 3.04768 s
|
41 |
+
[I] Total GPU Compute Time: 3.03404 s
|
42 |
+
[I] Explanations of the performance metrics are printed in the verbose logs.
|
43 |
+
```
|
44 |
+
Note: 73.5 qps x batch 8 = 588 fps @ ~15ms latency.
|
45 |
+
|
46 |
+
## Model Repository
|
47 |
+
|
48 |
+
See [Triton Model Repository Documentation](https://github.com/triton-inference-server/server/blob/main/docs/model_repository.md#model-repository) for more info.
|
49 |
+
|
50 |
+
```bash
|
51 |
+
# Create folder structure
|
52 |
+
mkdir -p triton-deploy/models/yolov7/1/
|
53 |
+
touch triton-deploy/models/yolov7/config.pbtxt
|
54 |
+
# Place model
|
55 |
+
mv yolov7-fp16-1x8x8.engine triton-deploy/models/yolov7/1/model.plan
|
56 |
+
```
|
57 |
+
|
58 |
+
## Model Configuration
|
59 |
+
|
60 |
+
See [Triton Model Configuration Documentation](https://github.com/triton-inference-server/server/blob/main/docs/model_configuration.md#model-configuration) for more info.
|
61 |
+
|
62 |
+
Minimal configuration for `triton-deploy/models/yolov7/config.pbtxt`:
|
63 |
+
|
64 |
+
```
|
65 |
+
name: "yolov7"
|
66 |
+
platform: "tensorrt_plan"
|
67 |
+
max_batch_size: 8
|
68 |
+
dynamic_batching { }
|
69 |
+
```
|
70 |
+
|
71 |
+
Example repository:
|
72 |
+
|
73 |
+
```bash
|
74 |
+
$ tree triton-deploy/
|
75 |
+
triton-deploy/
|
76 |
+
└── models
|
77 |
+
└── yolov7
|
78 |
+
├── 1
|
79 |
+
│ └── model.plan
|
80 |
+
└── config.pbtxt
|
81 |
+
|
82 |
+
3 directories, 2 files
|
83 |
+
```
|
84 |
+
|
85 |
+
## Start Triton Inference Server
|
86 |
+
|
87 |
+
```
|
88 |
+
docker run --gpus all --rm --ipc=host --shm-size=1g --ulimit memlock=-1 --ulimit stack=67108864 -p8000:8000 -p8001:8001 -p8002:8002 -v$(pwd)/triton-deploy/models:/models nvcr.io/nvidia/tritonserver:22.06-py3 tritonserver --model-repository=/models --strict-model-config=false --log-verbose 1
|
89 |
+
```
|
90 |
+
|
91 |
+
In the log you should see:
|
92 |
+
|
93 |
+
```
|
94 |
+
+--------+---------+--------+
|
95 |
+
| Model | Version | Status |
|
96 |
+
+--------+---------+--------+
|
97 |
+
| yolov7 | 1 | READY |
|
98 |
+
+--------+---------+--------+
|
99 |
+
```
|
100 |
+
|
101 |
+
## Performance with Model Analyzer
|
102 |
+
|
103 |
+
See [Triton Model Analyzer Documentation](https://github.com/triton-inference-server/server/blob/main/docs/model_analyzer.md#model-analyzer) for more info.
|
104 |
+
|
105 |
+
Performance numbers @ RTX 3090 + AMD Ryzen 9 5950X
|
106 |
+
|
107 |
+
Example test for 16 concurrent clients using shared memory, each with batch size 1 requests:
|
108 |
+
|
109 |
+
```bash
|
110 |
+
docker run -it --ipc=host --net=host nvcr.io/nvidia/tritonserver:22.06-py3-sdk /bin/bash
|
111 |
+
|
112 |
+
./install/bin/perf_analyzer -m yolov7 -u 127.0.0.1:8001 -i grpc --shared-memory system --concurrency-range 16
|
113 |
+
|
114 |
+
# Result (truncated)
|
115 |
+
Concurrency: 16, throughput: 590.119 infer/sec, latency 27080 usec
|
116 |
+
```
|
117 |
+
|
118 |
+
Throughput for 16 clients with batch size 1 is the same as for a single thread running the engine at 16 batch size locally thanks to Triton [Dynamic Batching Strategy](https://github.com/triton-inference-server/server/blob/main/docs/model_configuration.md#dynamic-batcher). Result without dynamic batching (disable in model configuration) considerably worse:
|
119 |
+
|
120 |
+
```bash
|
121 |
+
# Result (truncated)
|
122 |
+
Concurrency: 16, throughput: 335.587 infer/sec, latency 47616 usec
|
123 |
+
```
|
124 |
+
|
125 |
+
## How to run model in your code
|
126 |
+
|
127 |
+
Example client can be found in client.py. It can run dummy input, images and videos.
|
128 |
+
|
129 |
+
```bash
|
130 |
+
pip3 install tritonclient[all] opencv-python
|
131 |
+
python3 client.py image data/dog.jpg
|
132 |
+
```
|
133 |
+
|
134 |
+
![exemplary output result](data/dog_result.jpg)
|
135 |
+
|
136 |
+
```
|
137 |
+
$ python3 client.py --help
|
138 |
+
usage: client.py [-h] [-m MODEL] [--width WIDTH] [--height HEIGHT] [-u URL] [-o OUT] [-f FPS] [-i] [-v] [-t CLIENT_TIMEOUT] [-s] [-r ROOT_CERTIFICATES] [-p PRIVATE_KEY] [-x CERTIFICATE_CHAIN] {dummy,image,video} [input]
|
139 |
+
|
140 |
+
positional arguments:
|
141 |
+
{dummy,image,video} Run mode. 'dummy' will send an emtpy buffer to the server to test if inference works. 'image' will process an image. 'video' will process a video.
|
142 |
+
input Input file to load from in image or video mode
|
143 |
+
|
144 |
+
optional arguments:
|
145 |
+
-h, --help show this help message and exit
|
146 |
+
-m MODEL, --model MODEL
|
147 |
+
Inference model name, default yolov7
|
148 |
+
--width WIDTH Inference model input width, default 640
|
149 |
+
--height HEIGHT Inference model input height, default 640
|
150 |
+
-u URL, --url URL Inference server URL, default localhost:8001
|
151 |
+
-o OUT, --out OUT Write output into file instead of displaying it
|
152 |
+
-f FPS, --fps FPS Video output fps, default 24.0 FPS
|
153 |
+
-i, --model-info Print model status, configuration and statistics
|
154 |
+
-v, --verbose Enable verbose client output
|
155 |
+
-t CLIENT_TIMEOUT, --client-timeout CLIENT_TIMEOUT
|
156 |
+
Client timeout in seconds, default no timeout
|
157 |
+
-s, --ssl Enable SSL encrypted channel to the server
|
158 |
+
-r ROOT_CERTIFICATES, --root-certificates ROOT_CERTIFICATES
|
159 |
+
File holding PEM-encoded root certificates, default none
|
160 |
+
-p PRIVATE_KEY, --private-key PRIVATE_KEY
|
161 |
+
File holding PEM-encoded private key, default is none
|
162 |
+
-x CERTIFICATE_CHAIN, --certificate-chain CERTIFICATE_CHAIN
|
163 |
+
File holding PEM-encoded certicate chain default is none
|
164 |
+
```
|
deploy/triton-inference-server/boundingbox.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
class BoundingBox:
|
2 |
+
def __init__(self, classID, confidence, x1, x2, y1, y2, image_width, image_height):
|
3 |
+
self.classID = classID
|
4 |
+
self.confidence = confidence
|
5 |
+
self.x1 = x1
|
6 |
+
self.x2 = x2
|
7 |
+
self.y1 = y1
|
8 |
+
self.y2 = y2
|
9 |
+
self.u1 = x1 / image_width
|
10 |
+
self.u2 = x2 / image_width
|
11 |
+
self.v1 = y1 / image_height
|
12 |
+
self.v2 = y2 / image_height
|
13 |
+
|
14 |
+
def box(self):
|
15 |
+
return (self.x1, self.y1, self.x2, self.y2)
|
16 |
+
|
17 |
+
def width(self):
|
18 |
+
return self.x2 - self.x1
|
19 |
+
|
20 |
+
def height(self):
|
21 |
+
return self.y2 - self.y1
|
22 |
+
|
23 |
+
def center_absolute(self):
|
24 |
+
return (0.5 * (self.x1 + self.x2), 0.5 * (self.y1 + self.y2))
|
25 |
+
|
26 |
+
def center_normalized(self):
|
27 |
+
return (0.5 * (self.u1 + self.u2), 0.5 * (self.v1 + self.v2))
|
28 |
+
|
29 |
+
def size_absolute(self):
|
30 |
+
return (self.x2 - self.x1, self.y2 - self.y1)
|
31 |
+
|
32 |
+
def size_normalized(self):
|
33 |
+
return (self.u2 - self.u1, self.v2 - self.v1)
|
deploy/triton-inference-server/client.py
ADDED
@@ -0,0 +1,334 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
import argparse
|
4 |
+
import numpy as np
|
5 |
+
import sys
|
6 |
+
import cv2
|
7 |
+
|
8 |
+
import tritonclient.grpc as grpcclient
|
9 |
+
from tritonclient.utils import InferenceServerException
|
10 |
+
|
11 |
+
from processing import preprocess, postprocess
|
12 |
+
from render import render_box, render_filled_box, get_text_size, render_text, RAND_COLORS
|
13 |
+
from labels import COCOLabels
|
14 |
+
|
15 |
+
INPUT_NAMES = ["images"]
|
16 |
+
OUTPUT_NAMES = ["num_dets", "det_boxes", "det_scores", "det_classes"]
|
17 |
+
|
18 |
+
if __name__ == '__main__':
|
19 |
+
parser = argparse.ArgumentParser()
|
20 |
+
parser.add_argument('mode',
|
21 |
+
choices=['dummy', 'image', 'video'],
|
22 |
+
default='dummy',
|
23 |
+
help='Run mode. \'dummy\' will send an emtpy buffer to the server to test if inference works. \'image\' will process an image. \'video\' will process a video.')
|
24 |
+
parser.add_argument('input',
|
25 |
+
type=str,
|
26 |
+
nargs='?',
|
27 |
+
help='Input file to load from in image or video mode')
|
28 |
+
parser.add_argument('-m',
|
29 |
+
'--model',
|
30 |
+
type=str,
|
31 |
+
required=False,
|
32 |
+
default='yolov7',
|
33 |
+
help='Inference model name, default yolov7')
|
34 |
+
parser.add_argument('--width',
|
35 |
+
type=int,
|
36 |
+
required=False,
|
37 |
+
default=640,
|
38 |
+
help='Inference model input width, default 640')
|
39 |
+
parser.add_argument('--height',
|
40 |
+
type=int,
|
41 |
+
required=False,
|
42 |
+
default=640,
|
43 |
+
help='Inference model input height, default 640')
|
44 |
+
parser.add_argument('-u',
|
45 |
+
'--url',
|
46 |
+
type=str,
|
47 |
+
required=False,
|
48 |
+
default='localhost:8001',
|
49 |
+
help='Inference server URL, default localhost:8001')
|
50 |
+
parser.add_argument('-o',
|
51 |
+
'--out',
|
52 |
+
type=str,
|
53 |
+
required=False,
|
54 |
+
default='',
|
55 |
+
help='Write output into file instead of displaying it')
|
56 |
+
parser.add_argument('-f',
|
57 |
+
'--fps',
|
58 |
+
type=float,
|
59 |
+
required=False,
|
60 |
+
default=24.0,
|
61 |
+
help='Video output fps, default 24.0 FPS')
|
62 |
+
parser.add_argument('-i',
|
63 |
+
'--model-info',
|
64 |
+
action="store_true",
|
65 |
+
required=False,
|
66 |
+
default=False,
|
67 |
+
help='Print model status, configuration and statistics')
|
68 |
+
parser.add_argument('-v',
|
69 |
+
'--verbose',
|
70 |
+
action="store_true",
|
71 |
+
required=False,
|
72 |
+
default=False,
|
73 |
+
help='Enable verbose client output')
|
74 |
+
parser.add_argument('-t',
|
75 |
+
'--client-timeout',
|
76 |
+
type=float,
|
77 |
+
required=False,
|
78 |
+
default=None,
|
79 |
+
help='Client timeout in seconds, default no timeout')
|
80 |
+
parser.add_argument('-s',
|
81 |
+
'--ssl',
|
82 |
+
action="store_true",
|
83 |
+
required=False,
|
84 |
+
default=False,
|
85 |
+
help='Enable SSL encrypted channel to the server')
|
86 |
+
parser.add_argument('-r',
|
87 |
+
'--root-certificates',
|
88 |
+
type=str,
|
89 |
+
required=False,
|
90 |
+
default=None,
|
91 |
+
help='File holding PEM-encoded root certificates, default none')
|
92 |
+
parser.add_argument('-p',
|
93 |
+
'--private-key',
|
94 |
+
type=str,
|
95 |
+
required=False,
|
96 |
+
default=None,
|
97 |
+
help='File holding PEM-encoded private key, default is none')
|
98 |
+
parser.add_argument('-x',
|
99 |
+
'--certificate-chain',
|
100 |
+
type=str,
|
101 |
+
required=False,
|
102 |
+
default=None,
|
103 |
+
help='File holding PEM-encoded certicate chain default is none')
|
104 |
+
|
105 |
+
FLAGS = parser.parse_args()
|
106 |
+
|
107 |
+
# Create server context
|
108 |
+
try:
|
109 |
+
triton_client = grpcclient.InferenceServerClient(
|
110 |
+
url=FLAGS.url,
|
111 |
+
verbose=FLAGS.verbose,
|
112 |
+
ssl=FLAGS.ssl,
|
113 |
+
root_certificates=FLAGS.root_certificates,
|
114 |
+
private_key=FLAGS.private_key,
|
115 |
+
certificate_chain=FLAGS.certificate_chain)
|
116 |
+
except Exception as e:
|
117 |
+
print("context creation failed: " + str(e))
|
118 |
+
sys.exit()
|
119 |
+
|
120 |
+
# Health check
|
121 |
+
if not triton_client.is_server_live():
|
122 |
+
print("FAILED : is_server_live")
|
123 |
+
sys.exit(1)
|
124 |
+
|
125 |
+
if not triton_client.is_server_ready():
|
126 |
+
print("FAILED : is_server_ready")
|
127 |
+
sys.exit(1)
|
128 |
+
|
129 |
+
if not triton_client.is_model_ready(FLAGS.model):
|
130 |
+
print("FAILED : is_model_ready")
|
131 |
+
sys.exit(1)
|
132 |
+
|
133 |
+
if FLAGS.model_info:
|
134 |
+
# Model metadata
|
135 |
+
try:
|
136 |
+
metadata = triton_client.get_model_metadata(FLAGS.model)
|
137 |
+
print(metadata)
|
138 |
+
except InferenceServerException as ex:
|
139 |
+
if "Request for unknown model" not in ex.message():
|
140 |
+
print("FAILED : get_model_metadata")
|
141 |
+
print("Got: {}".format(ex.message()))
|
142 |
+
sys.exit(1)
|
143 |
+
else:
|
144 |
+
print("FAILED : get_model_metadata")
|
145 |
+
sys.exit(1)
|
146 |
+
|
147 |
+
# Model configuration
|
148 |
+
try:
|
149 |
+
config = triton_client.get_model_config(FLAGS.model)
|
150 |
+
if not (config.config.name == FLAGS.model):
|
151 |
+
print("FAILED: get_model_config")
|
152 |
+
sys.exit(1)
|
153 |
+
print(config)
|
154 |
+
except InferenceServerException as ex:
|
155 |
+
print("FAILED : get_model_config")
|
156 |
+
print("Got: {}".format(ex.message()))
|
157 |
+
sys.exit(1)
|
158 |
+
|
159 |
+
# DUMMY MODE
|
160 |
+
if FLAGS.mode == 'dummy':
|
161 |
+
print("Running in 'dummy' mode")
|
162 |
+
print("Creating emtpy buffer filled with ones...")
|
163 |
+
inputs = []
|
164 |
+
outputs = []
|
165 |
+
inputs.append(grpcclient.InferInput(INPUT_NAMES[0], [1, 3, FLAGS.width, FLAGS.height], "FP32"))
|
166 |
+
inputs[0].set_data_from_numpy(np.ones(shape=(1, 3, FLAGS.width, FLAGS.height), dtype=np.float32))
|
167 |
+
outputs.append(grpcclient.InferRequestedOutput(OUTPUT_NAMES[0]))
|
168 |
+
outputs.append(grpcclient.InferRequestedOutput(OUTPUT_NAMES[1]))
|
169 |
+
outputs.append(grpcclient.InferRequestedOutput(OUTPUT_NAMES[2]))
|
170 |
+
outputs.append(grpcclient.InferRequestedOutput(OUTPUT_NAMES[3]))
|
171 |
+
|
172 |
+
print("Invoking inference...")
|
173 |
+
results = triton_client.infer(model_name=FLAGS.model,
|
174 |
+
inputs=inputs,
|
175 |
+
outputs=outputs,
|
176 |
+
client_timeout=FLAGS.client_timeout)
|
177 |
+
if FLAGS.model_info:
|
178 |
+
statistics = triton_client.get_inference_statistics(model_name=FLAGS.model)
|
179 |
+
if len(statistics.model_stats) != 1:
|
180 |
+
print("FAILED: get_inference_statistics")
|
181 |
+
sys.exit(1)
|
182 |
+
print(statistics)
|
183 |
+
print("Done")
|
184 |
+
|
185 |
+
for output in OUTPUT_NAMES:
|
186 |
+
result = results.as_numpy(output)
|
187 |
+
print(f"Received result buffer \"{output}\" of size {result.shape}")
|
188 |
+
print(f"Naive buffer sum: {np.sum(result)}")
|
189 |
+
|
190 |
+
# IMAGE MODE
|
191 |
+
if FLAGS.mode == 'image':
|
192 |
+
print("Running in 'image' mode")
|
193 |
+
if not FLAGS.input:
|
194 |
+
print("FAILED: no input image")
|
195 |
+
sys.exit(1)
|
196 |
+
|
197 |
+
inputs = []
|
198 |
+
outputs = []
|
199 |
+
inputs.append(grpcclient.InferInput(INPUT_NAMES[0], [1, 3, FLAGS.width, FLAGS.height], "FP32"))
|
200 |
+
outputs.append(grpcclient.InferRequestedOutput(OUTPUT_NAMES[0]))
|
201 |
+
outputs.append(grpcclient.InferRequestedOutput(OUTPUT_NAMES[1]))
|
202 |
+
outputs.append(grpcclient.InferRequestedOutput(OUTPUT_NAMES[2]))
|
203 |
+
outputs.append(grpcclient.InferRequestedOutput(OUTPUT_NAMES[3]))
|
204 |
+
|
205 |
+
print("Creating buffer from image file...")
|
206 |
+
input_image = cv2.imread(str(FLAGS.input))
|
207 |
+
if input_image is None:
|
208 |
+
print(f"FAILED: could not load input image {str(FLAGS.input)}")
|
209 |
+
sys.exit(1)
|
210 |
+
input_image_buffer = preprocess(input_image, [FLAGS.width, FLAGS.height])
|
211 |
+
input_image_buffer = np.expand_dims(input_image_buffer, axis=0)
|
212 |
+
|
213 |
+
inputs[0].set_data_from_numpy(input_image_buffer)
|
214 |
+
|
215 |
+
print("Invoking inference...")
|
216 |
+
results = triton_client.infer(model_name=FLAGS.model,
|
217 |
+
inputs=inputs,
|
218 |
+
outputs=outputs,
|
219 |
+
client_timeout=FLAGS.client_timeout)
|
220 |
+
if FLAGS.model_info:
|
221 |
+
statistics = triton_client.get_inference_statistics(model_name=FLAGS.model)
|
222 |
+
if len(statistics.model_stats) != 1:
|
223 |
+
print("FAILED: get_inference_statistics")
|
224 |
+
sys.exit(1)
|
225 |
+
print(statistics)
|
226 |
+
print("Done")
|
227 |
+
|
228 |
+
for output in OUTPUT_NAMES:
|
229 |
+
result = results.as_numpy(output)
|
230 |
+
print(f"Received result buffer \"{output}\" of size {result.shape}")
|
231 |
+
print(f"Naive buffer sum: {np.sum(result)}")
|
232 |
+
|
233 |
+
num_dets = results.as_numpy(OUTPUT_NAMES[0])
|
234 |
+
det_boxes = results.as_numpy(OUTPUT_NAMES[1])
|
235 |
+
det_scores = results.as_numpy(OUTPUT_NAMES[2])
|
236 |
+
det_classes = results.as_numpy(OUTPUT_NAMES[3])
|
237 |
+
detected_objects = postprocess(num_dets, det_boxes, det_scores, det_classes, input_image.shape[1], input_image.shape[0], [FLAGS.width, FLAGS.height])
|
238 |
+
print(f"Detected objects: {len(detected_objects)}")
|
239 |
+
|
240 |
+
for box in detected_objects:
|
241 |
+
print(f"{COCOLabels(box.classID).name}: {box.confidence}")
|
242 |
+
input_image = render_box(input_image, box.box(), color=tuple(RAND_COLORS[box.classID % 64].tolist()))
|
243 |
+
size = get_text_size(input_image, f"{COCOLabels(box.classID).name}: {box.confidence:.2f}", normalised_scaling=0.6)
|
244 |
+
input_image = render_filled_box(input_image, (box.x1 - 3, box.y1 - 3, box.x1 + size[0], box.y1 + size[1]), color=(220, 220, 220))
|
245 |
+
input_image = render_text(input_image, f"{COCOLabels(box.classID).name}: {box.confidence:.2f}", (box.x1, box.y1), color=(30, 30, 30), normalised_scaling=0.5)
|
246 |
+
|
247 |
+
if FLAGS.out:
|
248 |
+
cv2.imwrite(FLAGS.out, input_image)
|
249 |
+
print(f"Saved result to {FLAGS.out}")
|
250 |
+
else:
|
251 |
+
cv2.imshow('image', input_image)
|
252 |
+
cv2.waitKey(0)
|
253 |
+
cv2.destroyAllWindows()
|
254 |
+
|
255 |
+
# VIDEO MODE
|
256 |
+
if FLAGS.mode == 'video':
|
257 |
+
print("Running in 'video' mode")
|
258 |
+
if not FLAGS.input:
|
259 |
+
print("FAILED: no input video")
|
260 |
+
sys.exit(1)
|
261 |
+
|
262 |
+
inputs = []
|
263 |
+
outputs = []
|
264 |
+
inputs.append(grpcclient.InferInput(INPUT_NAMES[0], [1, 3, FLAGS.width, FLAGS.height], "FP32"))
|
265 |
+
outputs.append(grpcclient.InferRequestedOutput(OUTPUT_NAMES[0]))
|
266 |
+
outputs.append(grpcclient.InferRequestedOutput(OUTPUT_NAMES[1]))
|
267 |
+
outputs.append(grpcclient.InferRequestedOutput(OUTPUT_NAMES[2]))
|
268 |
+
outputs.append(grpcclient.InferRequestedOutput(OUTPUT_NAMES[3]))
|
269 |
+
|
270 |
+
print("Opening input video stream...")
|
271 |
+
cap = cv2.VideoCapture(FLAGS.input)
|
272 |
+
if not cap.isOpened():
|
273 |
+
print(f"FAILED: cannot open video {FLAGS.input}")
|
274 |
+
sys.exit(1)
|
275 |
+
|
276 |
+
counter = 0
|
277 |
+
out = None
|
278 |
+
print("Invoking inference...")
|
279 |
+
while True:
|
280 |
+
ret, frame = cap.read()
|
281 |
+
if not ret:
|
282 |
+
print("failed to fetch next frame")
|
283 |
+
break
|
284 |
+
|
285 |
+
if counter == 0 and FLAGS.out:
|
286 |
+
print("Opening output video stream...")
|
287 |
+
fourcc = cv2.VideoWriter_fourcc('M', 'P', '4', 'V')
|
288 |
+
out = cv2.VideoWriter(FLAGS.out, fourcc, FLAGS.fps, (frame.shape[1], frame.shape[0]))
|
289 |
+
|
290 |
+
input_image_buffer = preprocess(frame, [FLAGS.width, FLAGS.height])
|
291 |
+
input_image_buffer = np.expand_dims(input_image_buffer, axis=0)
|
292 |
+
|
293 |
+
inputs[0].set_data_from_numpy(input_image_buffer)
|
294 |
+
|
295 |
+
results = triton_client.infer(model_name=FLAGS.model,
|
296 |
+
inputs=inputs,
|
297 |
+
outputs=outputs,
|
298 |
+
client_timeout=FLAGS.client_timeout)
|
299 |
+
|
300 |
+
num_dets = results.as_numpy("num_dets")
|
301 |
+
det_boxes = results.as_numpy("det_boxes")
|
302 |
+
det_scores = results.as_numpy("det_scores")
|
303 |
+
det_classes = results.as_numpy("det_classes")
|
304 |
+
detected_objects = postprocess(num_dets, det_boxes, det_scores, det_classes, frame.shape[1], frame.shape[0], [FLAGS.width, FLAGS.height])
|
305 |
+
print(f"Frame {counter}: {len(detected_objects)} objects")
|
306 |
+
counter += 1
|
307 |
+
|
308 |
+
for box in detected_objects:
|
309 |
+
print(f"{COCOLabels(box.classID).name}: {box.confidence}")
|
310 |
+
frame = render_box(frame, box.box(), color=tuple(RAND_COLORS[box.classID % 64].tolist()))
|
311 |
+
size = get_text_size(frame, f"{COCOLabels(box.classID).name}: {box.confidence:.2f}", normalised_scaling=0.6)
|
312 |
+
frame = render_filled_box(frame, (box.x1 - 3, box.y1 - 3, box.x1 + size[0], box.y1 + size[1]), color=(220, 220, 220))
|
313 |
+
frame = render_text(frame, f"{COCOLabels(box.classID).name}: {box.confidence:.2f}", (box.x1, box.y1), color=(30, 30, 30), normalised_scaling=0.5)
|
314 |
+
|
315 |
+
if FLAGS.out:
|
316 |
+
out.write(frame)
|
317 |
+
else:
|
318 |
+
cv2.imshow('image', frame)
|
319 |
+
if cv2.waitKey(1) == ord('q'):
|
320 |
+
break
|
321 |
+
|
322 |
+
if FLAGS.model_info:
|
323 |
+
statistics = triton_client.get_inference_statistics(model_name=FLAGS.model)
|
324 |
+
if len(statistics.model_stats) != 1:
|
325 |
+
print("FAILED: get_inference_statistics")
|
326 |
+
sys.exit(1)
|
327 |
+
print(statistics)
|
328 |
+
print("Done")
|
329 |
+
|
330 |
+
cap.release()
|
331 |
+
if FLAGS.out:
|
332 |
+
out.release()
|
333 |
+
else:
|
334 |
+
cv2.destroyAllWindows()
|
deploy/triton-inference-server/data/dog.jpg
ADDED
deploy/triton-inference-server/data/dog_result.jpg
ADDED
deploy/triton-inference-server/labels.py
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from enum import Enum
|
2 |
+
|
3 |
+
class COCOLabels(Enum):
|
4 |
+
PERSON = 0
|
5 |
+
BICYCLE = 1
|
6 |
+
CAR = 2
|
7 |
+
MOTORBIKE = 3
|
8 |
+
AEROPLANE = 4
|
9 |
+
BUS = 5
|
10 |
+
TRAIN = 6
|
11 |
+
TRUCK = 7
|
12 |
+
BOAT = 8
|
13 |
+
TRAFFIC_LIGHT = 9
|
14 |
+
FIRE_HYDRANT = 10
|
15 |
+
STOP_SIGN = 11
|
16 |
+
PARKING_METER = 12
|
17 |
+
BENCH = 13
|
18 |
+
BIRD = 14
|
19 |
+
CAT = 15
|
20 |
+
DOG = 16
|
21 |
+
HORSE = 17
|
22 |
+
SHEEP = 18
|
23 |
+
COW = 19
|
24 |
+
ELEPHANT = 20
|
25 |
+
BEAR = 21
|
26 |
+
ZEBRA = 22
|
27 |
+
GIRAFFE = 23
|
28 |
+
BACKPACK = 24
|
29 |
+
UMBRELLA = 25
|
30 |
+
HANDBAG = 26
|
31 |
+
TIE = 27
|
32 |
+
SUITCASE = 28
|
33 |
+
FRISBEE = 29
|
34 |
+
SKIS = 30
|
35 |
+
SNOWBOARD = 31
|
36 |
+
SPORTS_BALL = 32
|
37 |
+
KITE = 33
|
38 |
+
BASEBALL_BAT = 34
|
39 |
+
BASEBALL_GLOVE = 35
|
40 |
+
SKATEBOARD = 36
|
41 |
+
SURFBOARD = 37
|
42 |
+
TENNIS_RACKET = 38
|
43 |
+
BOTTLE = 39
|
44 |
+
WINE_GLASS = 40
|
45 |
+
CUP = 41
|
46 |
+
FORK = 42
|
47 |
+
KNIFE = 43
|
48 |
+
SPOON = 44
|
49 |
+
BOWL = 45
|
50 |
+
BANANA = 46
|
51 |
+
APPLE = 47
|
52 |
+
SANDWICH = 48
|
53 |
+
ORANGE = 49
|
54 |
+
BROCCOLI = 50
|
55 |
+
CARROT = 51
|
56 |
+
HOT_DOG = 52
|
57 |
+
PIZZA = 53
|
58 |
+
DONUT = 54
|
59 |
+
CAKE = 55
|
60 |
+
CHAIR = 56
|
61 |
+
SOFA = 57
|
62 |
+
POTTEDPLANT = 58
|
63 |
+
BED = 59
|
64 |
+
DININGTABLE = 60
|
65 |
+
TOILET = 61
|
66 |
+
TVMONITOR = 62
|
67 |
+
LAPTOP = 63
|
68 |
+
MOUSE = 64
|
69 |
+
REMOTE = 65
|
70 |
+
KEYBOARD = 66
|
71 |
+
CELL_PHONE = 67
|
72 |
+
MICROWAVE = 68
|
73 |
+
OVEN = 69
|
74 |
+
TOASTER = 70
|
75 |
+
SINK = 71
|
76 |
+
REFRIGERATOR = 72
|
77 |
+
BOOK = 73
|
78 |
+
CLOCK = 74
|
79 |
+
VASE = 75
|
80 |
+
SCISSORS = 76
|
81 |
+
TEDDY_BEAR = 77
|
82 |
+
HAIR_DRIER = 78
|
83 |
+
TOOTHBRUSH = 79
|
deploy/triton-inference-server/processing.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from boundingbox import BoundingBox
|
2 |
+
|
3 |
+
import cv2
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
def preprocess(img, input_shape, letter_box=True):
|
7 |
+
if letter_box:
|
8 |
+
img_h, img_w, _ = img.shape
|
9 |
+
new_h, new_w = input_shape[0], input_shape[1]
|
10 |
+
offset_h, offset_w = 0, 0
|
11 |
+
if (new_w / img_w) <= (new_h / img_h):
|
12 |
+
new_h = int(img_h * new_w / img_w)
|
13 |
+
offset_h = (input_shape[0] - new_h) // 2
|
14 |
+
else:
|
15 |
+
new_w = int(img_w * new_h / img_h)
|
16 |
+
offset_w = (input_shape[1] - new_w) // 2
|
17 |
+
resized = cv2.resize(img, (new_w, new_h))
|
18 |
+
img = np.full((input_shape[0], input_shape[1], 3), 127, dtype=np.uint8)
|
19 |
+
img[offset_h:(offset_h + new_h), offset_w:(offset_w + new_w), :] = resized
|
20 |
+
else:
|
21 |
+
img = cv2.resize(img, (input_shape[1], input_shape[0]))
|
22 |
+
|
23 |
+
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
24 |
+
img = img.transpose((2, 0, 1)).astype(np.float32)
|
25 |
+
img /= 255.0
|
26 |
+
return img
|
27 |
+
|
28 |
+
def postprocess(num_dets, det_boxes, det_scores, det_classes, img_w, img_h, input_shape, letter_box=True):
|
29 |
+
boxes = det_boxes[0, :num_dets[0][0]] / np.array([input_shape[0], input_shape[1], input_shape[0], input_shape[1]], dtype=np.float32)
|
30 |
+
scores = det_scores[0, :num_dets[0][0]]
|
31 |
+
classes = det_classes[0, :num_dets[0][0]].astype(np.int)
|
32 |
+
|
33 |
+
old_h, old_w = img_h, img_w
|
34 |
+
offset_h, offset_w = 0, 0
|
35 |
+
if letter_box:
|
36 |
+
if (img_w / input_shape[1]) >= (img_h / input_shape[0]):
|
37 |
+
old_h = int(input_shape[0] * img_w / input_shape[1])
|
38 |
+
offset_h = (old_h - img_h) // 2
|
39 |
+
else:
|
40 |
+
old_w = int(input_shape[1] * img_h / input_shape[0])
|
41 |
+
offset_w = (old_w - img_w) // 2
|
42 |
+
|
43 |
+
boxes = boxes * np.array([old_w, old_h, old_w, old_h], dtype=np.float32)
|
44 |
+
if letter_box:
|
45 |
+
boxes -= np.array([offset_w, offset_h, offset_w, offset_h], dtype=np.float32)
|
46 |
+
boxes = boxes.astype(np.int)
|
47 |
+
|
48 |
+
detected_objects = []
|
49 |
+
for box, score, label in zip(boxes, scores, classes):
|
50 |
+
detected_objects.append(BoundingBox(label, score, box[0], box[2], box[1], box[3], img_w, img_h))
|
51 |
+
return detected_objects
|
deploy/triton-inference-server/render.py
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
|
3 |
+
import cv2
|
4 |
+
|
5 |
+
from math import sqrt
|
6 |
+
|
7 |
+
_LINE_THICKNESS_SCALING = 500.0
|
8 |
+
|
9 |
+
np.random.seed(0)
|
10 |
+
RAND_COLORS = np.random.randint(50, 255, (64, 3), "int") # used for class visu
|
11 |
+
RAND_COLORS[0] = [220, 220, 220]
|
12 |
+
|
13 |
+
def render_box(img, box, color=(200, 200, 200)):
|
14 |
+
"""
|
15 |
+
Render a box. Calculates scaling and thickness automatically.
|
16 |
+
:param img: image to render into
|
17 |
+
:param box: (x1, y1, x2, y2) - box coordinates
|
18 |
+
:param color: (b, g, r) - box color
|
19 |
+
:return: updated image
|
20 |
+
"""
|
21 |
+
x1, y1, x2, y2 = box
|
22 |
+
thickness = int(
|
23 |
+
round(
|
24 |
+
(img.shape[0] * img.shape[1])
|
25 |
+
/ (_LINE_THICKNESS_SCALING * _LINE_THICKNESS_SCALING)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
thickness = max(1, thickness)
|
29 |
+
img = cv2.rectangle(
|
30 |
+
img,
|
31 |
+
(int(x1), int(y1)),
|
32 |
+
(int(x2), int(y2)),
|
33 |
+
color,
|
34 |
+
thickness=thickness
|
35 |
+
)
|
36 |
+
return img
|
37 |
+
|
38 |
+
def render_filled_box(img, box, color=(200, 200, 200)):
|
39 |
+
"""
|
40 |
+
Render a box. Calculates scaling and thickness automatically.
|
41 |
+
:param img: image to render into
|
42 |
+
:param box: (x1, y1, x2, y2) - box coordinates
|
43 |
+
:param color: (b, g, r) - box color
|
44 |
+
:return: updated image
|
45 |
+
"""
|
46 |
+
x1, y1, x2, y2 = box
|
47 |
+
img = cv2.rectangle(
|
48 |
+
img,
|
49 |
+
(int(x1), int(y1)),
|
50 |
+
(int(x2), int(y2)),
|
51 |
+
color,
|
52 |
+
thickness=cv2.FILLED
|
53 |
+
)
|
54 |
+
return img
|
55 |
+
|
56 |
+
_TEXT_THICKNESS_SCALING = 700.0
|
57 |
+
_TEXT_SCALING = 520.0
|
58 |
+
|
59 |
+
|
60 |
+
def get_text_size(img, text, normalised_scaling=1.0):
|
61 |
+
"""
|
62 |
+
Get calculated text size (as box width and height)
|
63 |
+
:param img: image reference, used to determine appropriate text scaling
|
64 |
+
:param text: text to display
|
65 |
+
:param normalised_scaling: additional normalised scaling. Default 1.0.
|
66 |
+
:return: (width, height) - width and height of text box
|
67 |
+
"""
|
68 |
+
thickness = int(
|
69 |
+
round(
|
70 |
+
(img.shape[0] * img.shape[1])
|
71 |
+
/ (_TEXT_THICKNESS_SCALING * _TEXT_THICKNESS_SCALING)
|
72 |
+
)
|
73 |
+
* normalised_scaling
|
74 |
+
)
|
75 |
+
thickness = max(1, thickness)
|
76 |
+
scaling = img.shape[0] / _TEXT_SCALING * normalised_scaling
|
77 |
+
return cv2.getTextSize(text, cv2.FONT_HERSHEY_SIMPLEX, scaling, thickness)[0]
|
78 |
+
|
79 |
+
|
80 |
+
def render_text(img, text, pos, color=(200, 200, 200), normalised_scaling=1.0):
|
81 |
+
"""
|
82 |
+
Render a text into the image. Calculates scaling and thickness automatically.
|
83 |
+
:param img: image to render into
|
84 |
+
:param text: text to display
|
85 |
+
:param pos: (x, y) - upper left coordinates of render position
|
86 |
+
:param color: (b, g, r) - text color
|
87 |
+
:param normalised_scaling: additional normalised scaling. Default 1.0.
|
88 |
+
:return: updated image
|
89 |
+
"""
|
90 |
+
x, y = pos
|
91 |
+
thickness = int(
|
92 |
+
round(
|
93 |
+
(img.shape[0] * img.shape[1])
|
94 |
+
/ (_TEXT_THICKNESS_SCALING * _TEXT_THICKNESS_SCALING)
|
95 |
+
)
|
96 |
+
* normalised_scaling
|
97 |
+
)
|
98 |
+
thickness = max(1, thickness)
|
99 |
+
scaling = img.shape[0] / _TEXT_SCALING * normalised_scaling
|
100 |
+
size = get_text_size(img, text, normalised_scaling)
|
101 |
+
cv2.putText(
|
102 |
+
img,
|
103 |
+
text,
|
104 |
+
(int(x), int(y + size[1])),
|
105 |
+
cv2.FONT_HERSHEY_SIMPLEX,
|
106 |
+
scaling,
|
107 |
+
color,
|
108 |
+
thickness=thickness,
|
109 |
+
)
|
110 |
+
return img
|
detect.py
ADDED
@@ -0,0 +1,196 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import time
|
3 |
+
from pathlib import Path
|
4 |
+
|
5 |
+
import cv2
|
6 |
+
import torch
|
7 |
+
import torch.backends.cudnn as cudnn
|
8 |
+
from numpy import random
|
9 |
+
|
10 |
+
from models.experimental import attempt_load
|
11 |
+
from utils.datasets import LoadStreams, LoadImages
|
12 |
+
from utils.general import check_img_size, check_requirements, check_imshow, non_max_suppression, apply_classifier, \
|
13 |
+
scale_coords, xyxy2xywh, strip_optimizer, set_logging, increment_path
|
14 |
+
from utils.plots import plot_one_box
|
15 |
+
from utils.torch_utils import select_device, load_classifier, time_synchronized, TracedModel
|
16 |
+
|
17 |
+
|
18 |
+
def detect(save_img=False):
|
19 |
+
source, weights, view_img, save_txt, imgsz, trace = opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size, not opt.no_trace
|
20 |
+
save_img = not opt.nosave and not source.endswith('.txt') # save inference images
|
21 |
+
webcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith(
|
22 |
+
('rtsp://', 'rtmp://', 'http://', 'https://'))
|
23 |
+
|
24 |
+
# Directories
|
25 |
+
save_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)) # increment run
|
26 |
+
(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
|
27 |
+
|
28 |
+
# Initialize
|
29 |
+
set_logging()
|
30 |
+
device = select_device(opt.device)
|
31 |
+
half = device.type != 'cpu' # half precision only supported on CUDA
|
32 |
+
|
33 |
+
# Load model
|
34 |
+
model = attempt_load(weights, map_location=device) # load FP32 model
|
35 |
+
stride = int(model.stride.max()) # model stride
|
36 |
+
imgsz = check_img_size(imgsz, s=stride) # check img_size
|
37 |
+
|
38 |
+
if trace:
|
39 |
+
model = TracedModel(model, device, opt.img_size)
|
40 |
+
|
41 |
+
if half:
|
42 |
+
model.half() # to FP16
|
43 |
+
|
44 |
+
# Second-stage classifier
|
45 |
+
classify = False
|
46 |
+
if classify:
|
47 |
+
modelc = load_classifier(name='resnet101', n=2) # initialize
|
48 |
+
modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']).to(device).eval()
|
49 |
+
|
50 |
+
# Set Dataloader
|
51 |
+
vid_path, vid_writer = None, None
|
52 |
+
if webcam:
|
53 |
+
view_img = check_imshow()
|
54 |
+
cudnn.benchmark = True # set True to speed up constant image size inference
|
55 |
+
dataset = LoadStreams(source, img_size=imgsz, stride=stride)
|
56 |
+
else:
|
57 |
+
dataset = LoadImages(source, img_size=imgsz, stride=stride)
|
58 |
+
|
59 |
+
# Get names and colors
|
60 |
+
names = model.module.names if hasattr(model, 'module') else model.names
|
61 |
+
colors = [[random.randint(0, 255) for _ in range(3)] for _ in names]
|
62 |
+
|
63 |
+
# Run inference
|
64 |
+
if device.type != 'cpu':
|
65 |
+
model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) # run once
|
66 |
+
old_img_w = old_img_h = imgsz
|
67 |
+
old_img_b = 1
|
68 |
+
|
69 |
+
t0 = time.time()
|
70 |
+
for path, img, im0s, vid_cap in dataset:
|
71 |
+
img = torch.from_numpy(img).to(device)
|
72 |
+
img = img.half() if half else img.float() # uint8 to fp16/32
|
73 |
+
img /= 255.0 # 0 - 255 to 0.0 - 1.0
|
74 |
+
if img.ndimension() == 3:
|
75 |
+
img = img.unsqueeze(0)
|
76 |
+
|
77 |
+
# Warmup
|
78 |
+
if device.type != 'cpu' and (old_img_b != img.shape[0] or old_img_h != img.shape[2] or old_img_w != img.shape[3]):
|
79 |
+
old_img_b = img.shape[0]
|
80 |
+
old_img_h = img.shape[2]
|
81 |
+
old_img_w = img.shape[3]
|
82 |
+
for i in range(3):
|
83 |
+
model(img, augment=opt.augment)[0]
|
84 |
+
|
85 |
+
# Inference
|
86 |
+
t1 = time_synchronized()
|
87 |
+
with torch.no_grad(): # Calculating gradients would cause a GPU memory leak
|
88 |
+
pred = model(img, augment=opt.augment)[0]
|
89 |
+
t2 = time_synchronized()
|
90 |
+
|
91 |
+
# Apply NMS
|
92 |
+
pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms)
|
93 |
+
t3 = time_synchronized()
|
94 |
+
|
95 |
+
# Apply Classifier
|
96 |
+
if classify:
|
97 |
+
pred = apply_classifier(pred, modelc, img, im0s)
|
98 |
+
|
99 |
+
# Process detections
|
100 |
+
for i, det in enumerate(pred): # detections per image
|
101 |
+
if webcam: # batch_size >= 1
|
102 |
+
p, s, im0, frame = path[i], '%g: ' % i, im0s[i].copy(), dataset.count
|
103 |
+
else:
|
104 |
+
p, s, im0, frame = path, '', im0s, getattr(dataset, 'frame', 0)
|
105 |
+
|
106 |
+
p = Path(p) # to Path
|
107 |
+
save_path = str(save_dir / p.name) # img.jpg
|
108 |
+
txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # img.txt
|
109 |
+
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
|
110 |
+
if len(det):
|
111 |
+
# Rescale boxes from img_size to im0 size
|
112 |
+
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
|
113 |
+
|
114 |
+
# Print results
|
115 |
+
for c in det[:, -1].unique():
|
116 |
+
n = (det[:, -1] == c).sum() # detections per class
|
117 |
+
s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
|
118 |
+
|
119 |
+
# Write results
|
120 |
+
for *xyxy, conf, cls in reversed(det):
|
121 |
+
if save_txt: # Write to file
|
122 |
+
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
|
123 |
+
line = (cls, *xywh, conf) if opt.save_conf else (cls, *xywh) # label format
|
124 |
+
with open(txt_path + '.txt', 'a') as f:
|
125 |
+
f.write(('%g ' * len(line)).rstrip() % line + '\n')
|
126 |
+
|
127 |
+
if save_img or view_img: # Add bbox to image
|
128 |
+
label = f'{names[int(cls)]} {conf:.2f}'
|
129 |
+
plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=1)
|
130 |
+
|
131 |
+
# Print time (inference + NMS)
|
132 |
+
print(f'{s}Done. ({(1E3 * (t2 - t1)):.1f}ms) Inference, ({(1E3 * (t3 - t2)):.1f}ms) NMS')
|
133 |
+
|
134 |
+
# Stream results
|
135 |
+
if view_img:
|
136 |
+
cv2.imshow(str(p), im0)
|
137 |
+
cv2.waitKey(1) # 1 millisecond
|
138 |
+
|
139 |
+
# Save results (image with detections)
|
140 |
+
if save_img:
|
141 |
+
if dataset.mode == 'image':
|
142 |
+
cv2.imwrite(save_path, im0)
|
143 |
+
print(f" The image with the result is saved in: {save_path}")
|
144 |
+
else: # 'video' or 'stream'
|
145 |
+
if vid_path != save_path: # new video
|
146 |
+
vid_path = save_path
|
147 |
+
if isinstance(vid_writer, cv2.VideoWriter):
|
148 |
+
vid_writer.release() # release previous video writer
|
149 |
+
if vid_cap: # video
|
150 |
+
fps = vid_cap.get(cv2.CAP_PROP_FPS)
|
151 |
+
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
152 |
+
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
153 |
+
else: # stream
|
154 |
+
fps, w, h = 30, im0.shape[1], im0.shape[0]
|
155 |
+
save_path += '.mp4'
|
156 |
+
vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
|
157 |
+
vid_writer.write(im0)
|
158 |
+
|
159 |
+
if save_txt or save_img:
|
160 |
+
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
|
161 |
+
#print(f"Results saved to {save_dir}{s}")
|
162 |
+
|
163 |
+
print(f'Done. ({time.time() - t0:.3f}s)')
|
164 |
+
|
165 |
+
|
166 |
+
if __name__ == '__main__':
|
167 |
+
parser = argparse.ArgumentParser()
|
168 |
+
parser.add_argument('--weights', nargs='+', type=str, default='yolov7.pt', help='model.pt path(s)')
|
169 |
+
parser.add_argument('--source', type=str, default='inference/images', help='source') # file/folder, 0 for webcam
|
170 |
+
parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
|
171 |
+
parser.add_argument('--conf-thres', type=float, default=0.25, help='object confidence threshold')
|
172 |
+
parser.add_argument('--iou-thres', type=float, default=0.45, help='IOU threshold for NMS')
|
173 |
+
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
174 |
+
parser.add_argument('--view-img', action='store_true', help='display results')
|
175 |
+
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
|
176 |
+
parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
|
177 |
+
parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
|
178 |
+
parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3')
|
179 |
+
parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
|
180 |
+
parser.add_argument('--augment', action='store_true', help='augmented inference')
|
181 |
+
parser.add_argument('--update', action='store_true', help='update all models')
|
182 |
+
parser.add_argument('--project', default='runs/detect', help='save results to project/name')
|
183 |
+
parser.add_argument('--name', default='exp', help='save results to project/name')
|
184 |
+
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
|
185 |
+
parser.add_argument('--no-trace', action='store_true', help='don`t trace model')
|
186 |
+
opt = parser.parse_args()
|
187 |
+
print(opt)
|
188 |
+
#check_requirements(exclude=('pycocotools', 'thop'))
|
189 |
+
|
190 |
+
with torch.no_grad():
|
191 |
+
if opt.update: # update all models (to fix SourceChangeWarning)
|
192 |
+
for opt.weights in ['yolov7.pt']:
|
193 |
+
detect()
|
194 |
+
strip_optimizer(opt.weights)
|
195 |
+
else:
|
196 |
+
detect()
|
detect_or_track.py
ADDED
@@ -0,0 +1,285 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import time
|
3 |
+
from pathlib import Path
|
4 |
+
import cv2
|
5 |
+
import torch
|
6 |
+
import torch.backends.cudnn as cudnn
|
7 |
+
from numpy import random
|
8 |
+
|
9 |
+
from models.experimental import attempt_load
|
10 |
+
from utils.datasets import LoadStreams, LoadImages
|
11 |
+
from utils.general import check_img_size, check_requirements, \
|
12 |
+
check_imshow, non_max_suppression, apply_classifier, \
|
13 |
+
scale_coords, xyxy2xywh, strip_optimizer, set_logging, \
|
14 |
+
increment_path
|
15 |
+
from utils.plots import plot_one_box
|
16 |
+
from utils.torch_utils import select_device, load_classifier, time_synchronized, TracedModel
|
17 |
+
|
18 |
+
from sort import *
|
19 |
+
|
20 |
+
|
21 |
+
"""Function to Draw Bounding boxes"""
|
22 |
+
def draw_boxes(img, bbox, identities=None, categories=None, confidences = None, names=None, colors = None):
|
23 |
+
for i, box in enumerate(bbox):
|
24 |
+
x1, y1, x2, y2 = [int(i) for i in box]
|
25 |
+
tl = opt.thickness or round(0.002 * (img.shape[0] + img.shape[1]) / 2) + 1 # line/font thickness
|
26 |
+
|
27 |
+
cat = int(categories[i]) if categories is not None else 0
|
28 |
+
id = int(identities[i]) if identities is not None else 0
|
29 |
+
# conf = confidences[i] if confidences is not None else 0
|
30 |
+
|
31 |
+
color = colors[cat]
|
32 |
+
|
33 |
+
if not opt.nobbox:
|
34 |
+
cv2.rectangle(img, (x1, y1), (x2, y2), color, tl)
|
35 |
+
|
36 |
+
if not opt.nolabel:
|
37 |
+
label = str(id) + ":"+ names[cat] if identities is not None else f'{names[cat]} {confidences[i]:.2f}'
|
38 |
+
tf = max(tl - 1, 1) # font thickness
|
39 |
+
t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0]
|
40 |
+
c2 = x1 + t_size[0], y1 - t_size[1] - 3
|
41 |
+
cv2.rectangle(img, (x1, y1), c2, color, -1, cv2.LINE_AA) # filled
|
42 |
+
cv2.putText(img, label, (x1, y1 - 2), 0, tl / 3, [225, 255, 255], thickness=tf, lineType=cv2.LINE_AA)
|
43 |
+
|
44 |
+
|
45 |
+
return img
|
46 |
+
|
47 |
+
|
48 |
+
def detect(save_img=False):
|
49 |
+
source, weights, view_img, save_txt, imgsz, trace = opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size, not opt.no_trace
|
50 |
+
save_img = not opt.nosave and not source.endswith('.txt') # save inference images
|
51 |
+
webcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith(
|
52 |
+
('rtsp://', 'rtmp://', 'http://', 'https://'))
|
53 |
+
save_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)) # increment run
|
54 |
+
if not opt.nosave:
|
55 |
+
(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
|
56 |
+
|
57 |
+
# Initialize
|
58 |
+
set_logging()
|
59 |
+
device = select_device(opt.device)
|
60 |
+
half = device.type != 'cpu' # half precision only supported on CUDA
|
61 |
+
|
62 |
+
# Load model
|
63 |
+
model = attempt_load(weights, map_location=device) # load FP32 model
|
64 |
+
stride = int(model.stride.max()) # model stride
|
65 |
+
imgsz = check_img_size(imgsz, s=stride) # check img_size
|
66 |
+
|
67 |
+
if trace:
|
68 |
+
model = TracedModel(model, device, opt.img_size)
|
69 |
+
|
70 |
+
if half:
|
71 |
+
model.half() # to FP16
|
72 |
+
|
73 |
+
# Second-stage classifier
|
74 |
+
classify = False
|
75 |
+
if classify:
|
76 |
+
modelc = load_classifier(name='resnet101', n=2) # initialize
|
77 |
+
modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']).to(device).eval()
|
78 |
+
|
79 |
+
# Set Dataloader
|
80 |
+
vid_path, vid_writer = None, None
|
81 |
+
if webcam:
|
82 |
+
view_img = check_imshow()
|
83 |
+
cudnn.benchmark = True # set True to speed up constant image size inference
|
84 |
+
dataset = LoadStreams(source, img_size=imgsz, stride=stride)
|
85 |
+
else:
|
86 |
+
dataset = LoadImages(source, img_size=imgsz, stride=stride)
|
87 |
+
|
88 |
+
# Get names and colors
|
89 |
+
names = model.module.names if hasattr(model, 'module') else model.names
|
90 |
+
colors = [[random.randint(0, 255) for _ in range(3)] for _ in names]
|
91 |
+
|
92 |
+
# Run inference
|
93 |
+
if device.type != 'cpu':
|
94 |
+
model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) # run once
|
95 |
+
old_img_w = old_img_h = imgsz
|
96 |
+
old_img_b = 1
|
97 |
+
|
98 |
+
t0 = time.time()
|
99 |
+
###################################
|
100 |
+
startTime = 0
|
101 |
+
###################################
|
102 |
+
for path, img, im0s, vid_cap in dataset:
|
103 |
+
img = torch.from_numpy(img).to(device)
|
104 |
+
img = img.half() if half else img.float() # uint8 to fp16/32
|
105 |
+
img /= 255.0 # 0 - 255 to 0.0 - 1.0
|
106 |
+
if img.ndimension() == 3:
|
107 |
+
img = img.unsqueeze(0)
|
108 |
+
|
109 |
+
# Warmup
|
110 |
+
if device.type != 'cpu' and (old_img_b != img.shape[0] or old_img_h != img.shape[2] or old_img_w != img.shape[3]):
|
111 |
+
old_img_b = img.shape[0]
|
112 |
+
old_img_h = img.shape[2]
|
113 |
+
old_img_w = img.shape[3]
|
114 |
+
for i in range(3):
|
115 |
+
model(img, augment=opt.augment)[0]
|
116 |
+
|
117 |
+
# Inference
|
118 |
+
t1 = time_synchronized()
|
119 |
+
pred = model(img, augment=opt.augment)[0]
|
120 |
+
t2 = time_synchronized()
|
121 |
+
|
122 |
+
# Apply NMS
|
123 |
+
pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms)
|
124 |
+
t3 = time_synchronized()
|
125 |
+
|
126 |
+
# Apply Classifier
|
127 |
+
if classify:
|
128 |
+
pred = apply_classifier(pred, modelc, img, im0s)
|
129 |
+
|
130 |
+
# Process detections
|
131 |
+
for i, det in enumerate(pred): # detections per image
|
132 |
+
if webcam: # batch_size >= 1
|
133 |
+
p, s, im0, frame = path[i], '%g: ' % i, im0s[i].copy(), dataset.count
|
134 |
+
else:
|
135 |
+
p, s, im0, frame = path, '', im0s, getattr(dataset, 'frame', 0)
|
136 |
+
|
137 |
+
p = Path(p) # to Path
|
138 |
+
save_path = str(save_dir / p.name) # img.jpg
|
139 |
+
txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # img.txt
|
140 |
+
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
|
141 |
+
if len(det):
|
142 |
+
# Rescale boxes from img_size to im0 size
|
143 |
+
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
|
144 |
+
|
145 |
+
# Print results
|
146 |
+
for c in det[:, -1].unique():
|
147 |
+
n = (det[:, -1] == c).sum() # detections per class
|
148 |
+
s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
|
149 |
+
|
150 |
+
dets_to_sort = np.empty((0,6))
|
151 |
+
# NOTE: We send in detected object class too
|
152 |
+
for x1,y1,x2,y2,conf,detclass in det.cpu().detach().numpy():
|
153 |
+
dets_to_sort = np.vstack((dets_to_sort,
|
154 |
+
np.array([x1, y1, x2, y2, conf, detclass])))
|
155 |
+
|
156 |
+
|
157 |
+
if opt.track:
|
158 |
+
|
159 |
+
tracked_dets = sort_tracker.update(dets_to_sort, opt.unique_track_color)
|
160 |
+
tracks =sort_tracker.getTrackers()
|
161 |
+
|
162 |
+
# draw boxes for visualization
|
163 |
+
if len(tracked_dets)>0:
|
164 |
+
bbox_xyxy = tracked_dets[:,:4]
|
165 |
+
identities = tracked_dets[:, 8]
|
166 |
+
categories = tracked_dets[:, 4]
|
167 |
+
confidences = None
|
168 |
+
|
169 |
+
if opt.show_track:
|
170 |
+
#loop over tracks
|
171 |
+
for t, track in enumerate(tracks):
|
172 |
+
|
173 |
+
track_color = colors[int(track.detclass)] if not opt.unique_track_color else sort_tracker.color_list[t]
|
174 |
+
|
175 |
+
[cv2.line(im0, (int(track.centroidarr[i][0]),
|
176 |
+
int(track.centroidarr[i][1])),
|
177 |
+
(int(track.centroidarr[i+1][0]),
|
178 |
+
int(track.centroidarr[i+1][1])),
|
179 |
+
track_color, thickness=opt.thickness)
|
180 |
+
for i,_ in enumerate(track.centroidarr)
|
181 |
+
if i < len(track.centroidarr)-1 ]
|
182 |
+
else:
|
183 |
+
bbox_xyxy = dets_to_sort[:,:4]
|
184 |
+
identities = None
|
185 |
+
categories = dets_to_sort[:, 5]
|
186 |
+
confidences = dets_to_sort[:, 4]
|
187 |
+
|
188 |
+
im0 = draw_boxes(im0, bbox_xyxy, identities, categories, confidences, names, colors)
|
189 |
+
|
190 |
+
|
191 |
+
|
192 |
+
|
193 |
+
|
194 |
+
# Print time (inference + NMS)
|
195 |
+
print(f'{s}Done. ({(1E3 * (t2 - t1)):.1f}ms) Inference, ({(1E3 * (t3 - t2)):.1f}ms) NMS')
|
196 |
+
|
197 |
+
# Stream results
|
198 |
+
######################################################
|
199 |
+
if dataset.mode != 'image' and opt.show_fps:
|
200 |
+
currentTime = time.time()
|
201 |
+
|
202 |
+
fps = 1/(currentTime - startTime)
|
203 |
+
startTime = currentTime
|
204 |
+
cv2.putText(im0, "FPS: " + str(int(fps)), (20, 70), cv2.FONT_HERSHEY_PLAIN, 2, (0,255,0),2)
|
205 |
+
|
206 |
+
#######################################################
|
207 |
+
if view_img:
|
208 |
+
cv2.imshow(str(p), im0)
|
209 |
+
cv2.waitKey(1) # 1 millisecond
|
210 |
+
|
211 |
+
# Save results (image with detections)
|
212 |
+
if save_img:
|
213 |
+
if dataset.mode == 'image':
|
214 |
+
cv2.imwrite(save_path, im0)
|
215 |
+
print(f" The image with the result is saved in: {save_path}")
|
216 |
+
else: # 'video' or 'stream'
|
217 |
+
if vid_path != save_path: # new video
|
218 |
+
vid_path = save_path
|
219 |
+
if isinstance(vid_writer, cv2.VideoWriter):
|
220 |
+
vid_writer.release() # release previous video writer
|
221 |
+
if vid_cap: # video
|
222 |
+
fps = vid_cap.get(cv2.CAP_PROP_FPS)
|
223 |
+
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
224 |
+
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
225 |
+
else: # stream
|
226 |
+
fps, w, h = 30, im0.shape[1], im0.shape[0]
|
227 |
+
save_path += '.mp4'
|
228 |
+
vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
|
229 |
+
vid_writer.write(im0)
|
230 |
+
|
231 |
+
if save_txt or save_img:
|
232 |
+
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
|
233 |
+
#print(f"Results saved to {save_dir}{s}")
|
234 |
+
|
235 |
+
print(f'Done. ({time.time() - t0:.3f}s)')
|
236 |
+
|
237 |
+
|
238 |
+
if __name__ == '__main__':
|
239 |
+
parser = argparse.ArgumentParser()
|
240 |
+
parser.add_argument('--weights', nargs='+', type=str, default='yolov7.pt', help='model.pt path(s)')
|
241 |
+
parser.add_argument('--source', type=str, default='inference/images', help='source') # file/folder, 0 for webcam
|
242 |
+
parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
|
243 |
+
parser.add_argument('--conf-thres', type=float, default=0.25, help='object confidence threshold')
|
244 |
+
parser.add_argument('--iou-thres', type=float, default=0.45, help='IOU threshold for NMS')
|
245 |
+
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
246 |
+
parser.add_argument('--view-img', action='store_true', help='display results')
|
247 |
+
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
|
248 |
+
parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
|
249 |
+
parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
|
250 |
+
parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3')
|
251 |
+
parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
|
252 |
+
parser.add_argument('--augment', action='store_true', help='augmented inference')
|
253 |
+
parser.add_argument('--update', action='store_true', help='update all models')
|
254 |
+
parser.add_argument('--project', default='runs/detect', help='save results to project/name')
|
255 |
+
parser.add_argument('--name', default='exp', help='save results to project/name')
|
256 |
+
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
|
257 |
+
parser.add_argument('--no-trace', action='store_true', help='don`t trace model')
|
258 |
+
|
259 |
+
parser.add_argument('--track', action='store_true', help='run tracking')
|
260 |
+
parser.add_argument('--show-track', action='store_true', help='show tracked path')
|
261 |
+
parser.add_argument('--show-fps', action='store_true', help='show fps')
|
262 |
+
parser.add_argument('--thickness', type=int, default=2, help='bounding box and font size thickness')
|
263 |
+
parser.add_argument('--seed', type=int, default=1, help='random seed to control bbox colors')
|
264 |
+
parser.add_argument('--nobbox', action='store_true', help='don`t show bounding box')
|
265 |
+
parser.add_argument('--nolabel', action='store_true', help='don`t show label')
|
266 |
+
parser.add_argument('--unique-track-color', action='store_true', help='show each track in unique color')
|
267 |
+
|
268 |
+
|
269 |
+
opt = parser.parse_args()
|
270 |
+
print(opt)
|
271 |
+
np.random.seed(opt.seed)
|
272 |
+
|
273 |
+
sort_tracker = Sort(max_age=5,
|
274 |
+
min_hits=2,
|
275 |
+
iou_threshold=0.2)
|
276 |
+
|
277 |
+
#check_requirements(exclude=('pycocotools', 'thop'))
|
278 |
+
|
279 |
+
with torch.no_grad():
|
280 |
+
if opt.update: # update all models (to fix SourceChangeWarning)
|
281 |
+
for opt.weights in ['yolov7.pt']:
|
282 |
+
detect()
|
283 |
+
strip_optimizer(opt.weights)
|
284 |
+
else:
|
285 |
+
detect()
|
export.py
ADDED
@@ -0,0 +1,205 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import sys
|
3 |
+
import time
|
4 |
+
import warnings
|
5 |
+
|
6 |
+
sys.path.append('./') # to run '$ python *.py' files in subdirectories
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import torch.nn as nn
|
10 |
+
from torch.utils.mobile_optimizer import optimize_for_mobile
|
11 |
+
|
12 |
+
import models
|
13 |
+
from models.experimental import attempt_load, End2End
|
14 |
+
from utils.activations import Hardswish, SiLU
|
15 |
+
from utils.general import set_logging, check_img_size
|
16 |
+
from utils.torch_utils import select_device
|
17 |
+
from utils.add_nms import RegisterNMS
|
18 |
+
|
19 |
+
if __name__ == '__main__':
|
20 |
+
parser = argparse.ArgumentParser()
|
21 |
+
parser.add_argument('--weights', type=str, default='./yolor-csp-c.pt', help='weights path')
|
22 |
+
parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='image size') # height, width
|
23 |
+
parser.add_argument('--batch-size', type=int, default=1, help='batch size')
|
24 |
+
parser.add_argument('--dynamic', action='store_true', help='dynamic ONNX axes')
|
25 |
+
parser.add_argument('--dynamic-batch', action='store_true', help='dynamic batch onnx for tensorrt and onnx-runtime')
|
26 |
+
parser.add_argument('--grid', action='store_true', help='export Detect() layer grid')
|
27 |
+
parser.add_argument('--end2end', action='store_true', help='export end2end onnx')
|
28 |
+
parser.add_argument('--max-wh', type=int, default=None, help='None for tensorrt nms, int value for onnx-runtime nms')
|
29 |
+
parser.add_argument('--topk-all', type=int, default=100, help='topk objects for every images')
|
30 |
+
parser.add_argument('--iou-thres', type=float, default=0.45, help='iou threshold for NMS')
|
31 |
+
parser.add_argument('--conf-thres', type=float, default=0.25, help='conf threshold for NMS')
|
32 |
+
parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
33 |
+
parser.add_argument('--simplify', action='store_true', help='simplify onnx model')
|
34 |
+
parser.add_argument('--include-nms', action='store_true', help='export end2end onnx')
|
35 |
+
parser.add_argument('--fp16', action='store_true', help='CoreML FP16 half-precision export')
|
36 |
+
parser.add_argument('--int8', action='store_true', help='CoreML INT8 quantization')
|
37 |
+
opt = parser.parse_args()
|
38 |
+
opt.img_size *= 2 if len(opt.img_size) == 1 else 1 # expand
|
39 |
+
opt.dynamic = opt.dynamic and not opt.end2end
|
40 |
+
opt.dynamic = False if opt.dynamic_batch else opt.dynamic
|
41 |
+
print(opt)
|
42 |
+
set_logging()
|
43 |
+
t = time.time()
|
44 |
+
|
45 |
+
# Load PyTorch model
|
46 |
+
device = select_device(opt.device)
|
47 |
+
model = attempt_load(opt.weights, map_location=device) # load FP32 model
|
48 |
+
labels = model.names
|
49 |
+
|
50 |
+
# Checks
|
51 |
+
gs = int(max(model.stride)) # grid size (max stride)
|
52 |
+
opt.img_size = [check_img_size(x, gs) for x in opt.img_size] # verify img_size are gs-multiples
|
53 |
+
|
54 |
+
# Input
|
55 |
+
img = torch.zeros(opt.batch_size, 3, *opt.img_size).to(device) # image size(1,3,320,192) iDetection
|
56 |
+
|
57 |
+
# Update model
|
58 |
+
for k, m in model.named_modules():
|
59 |
+
m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility
|
60 |
+
if isinstance(m, models.common.Conv): # assign export-friendly activations
|
61 |
+
if isinstance(m.act, nn.Hardswish):
|
62 |
+
m.act = Hardswish()
|
63 |
+
elif isinstance(m.act, nn.SiLU):
|
64 |
+
m.act = SiLU()
|
65 |
+
# elif isinstance(m, models.yolo.Detect):
|
66 |
+
# m.forward = m.forward_export # assign forward (optional)
|
67 |
+
model.model[-1].export = not opt.grid # set Detect() layer grid export
|
68 |
+
y = model(img) # dry run
|
69 |
+
if opt.include_nms:
|
70 |
+
model.model[-1].include_nms = True
|
71 |
+
y = None
|
72 |
+
|
73 |
+
# TorchScript export
|
74 |
+
try:
|
75 |
+
print('\nStarting TorchScript export with torch %s...' % torch.__version__)
|
76 |
+
f = opt.weights.replace('.pt', '.torchscript.pt') # filename
|
77 |
+
ts = torch.jit.trace(model, img, strict=False)
|
78 |
+
ts.save(f)
|
79 |
+
print('TorchScript export success, saved as %s' % f)
|
80 |
+
except Exception as e:
|
81 |
+
print('TorchScript export failure: %s' % e)
|
82 |
+
|
83 |
+
# CoreML export
|
84 |
+
try:
|
85 |
+
import coremltools as ct
|
86 |
+
|
87 |
+
print('\nStarting CoreML export with coremltools %s...' % ct.__version__)
|
88 |
+
# convert model from torchscript and apply pixel scaling as per detect.py
|
89 |
+
ct_model = ct.convert(ts, inputs=[ct.ImageType('image', shape=img.shape, scale=1 / 255.0, bias=[0, 0, 0])])
|
90 |
+
bits, mode = (8, 'kmeans_lut') if opt.int8 else (16, 'linear') if opt.fp16 else (32, None)
|
91 |
+
if bits < 32:
|
92 |
+
if sys.platform.lower() == 'darwin': # quantization only supported on macOS
|
93 |
+
with warnings.catch_warnings():
|
94 |
+
warnings.filterwarnings("ignore", category=DeprecationWarning) # suppress numpy==1.20 float warning
|
95 |
+
ct_model = ct.models.neural_network.quantization_utils.quantize_weights(ct_model, bits, mode)
|
96 |
+
else:
|
97 |
+
print('quantization only supported on macOS, skipping...')
|
98 |
+
|
99 |
+
f = opt.weights.replace('.pt', '.mlmodel') # filename
|
100 |
+
ct_model.save(f)
|
101 |
+
print('CoreML export success, saved as %s' % f)
|
102 |
+
except Exception as e:
|
103 |
+
print('CoreML export failure: %s' % e)
|
104 |
+
|
105 |
+
# TorchScript-Lite export
|
106 |
+
try:
|
107 |
+
print('\nStarting TorchScript-Lite export with torch %s...' % torch.__version__)
|
108 |
+
f = opt.weights.replace('.pt', '.torchscript.ptl') # filename
|
109 |
+
tsl = torch.jit.trace(model, img, strict=False)
|
110 |
+
tsl = optimize_for_mobile(tsl)
|
111 |
+
tsl._save_for_lite_interpreter(f)
|
112 |
+
print('TorchScript-Lite export success, saved as %s' % f)
|
113 |
+
except Exception as e:
|
114 |
+
print('TorchScript-Lite export failure: %s' % e)
|
115 |
+
|
116 |
+
# ONNX export
|
117 |
+
try:
|
118 |
+
import onnx
|
119 |
+
|
120 |
+
print('\nStarting ONNX export with onnx %s...' % onnx.__version__)
|
121 |
+
f = opt.weights.replace('.pt', '.onnx') # filename
|
122 |
+
model.eval()
|
123 |
+
output_names = ['classes', 'boxes'] if y is None else ['output']
|
124 |
+
dynamic_axes = None
|
125 |
+
if opt.dynamic:
|
126 |
+
dynamic_axes = {'images': {0: 'batch', 2: 'height', 3: 'width'}, # size(1,3,640,640)
|
127 |
+
'output': {0: 'batch', 2: 'y', 3: 'x'}}
|
128 |
+
if opt.dynamic_batch:
|
129 |
+
opt.batch_size = 'batch'
|
130 |
+
dynamic_axes = {
|
131 |
+
'images': {
|
132 |
+
0: 'batch',
|
133 |
+
}, }
|
134 |
+
if opt.end2end and opt.max_wh is None:
|
135 |
+
output_axes = {
|
136 |
+
'num_dets': {0: 'batch'},
|
137 |
+
'det_boxes': {0: 'batch'},
|
138 |
+
'det_scores': {0: 'batch'},
|
139 |
+
'det_classes': {0: 'batch'},
|
140 |
+
}
|
141 |
+
else:
|
142 |
+
output_axes = {
|
143 |
+
'output': {0: 'batch'},
|
144 |
+
}
|
145 |
+
dynamic_axes.update(output_axes)
|
146 |
+
if opt.grid:
|
147 |
+
if opt.end2end:
|
148 |
+
print('\nStarting export end2end onnx model for %s...' % 'TensorRT' if opt.max_wh is None else 'onnxruntime')
|
149 |
+
model = End2End(model,opt.topk_all,opt.iou_thres,opt.conf_thres,opt.max_wh,device,len(labels))
|
150 |
+
if opt.end2end and opt.max_wh is None:
|
151 |
+
output_names = ['num_dets', 'det_boxes', 'det_scores', 'det_classes']
|
152 |
+
shapes = [opt.batch_size, 1, opt.batch_size, opt.topk_all, 4,
|
153 |
+
opt.batch_size, opt.topk_all, opt.batch_size, opt.topk_all]
|
154 |
+
else:
|
155 |
+
output_names = ['output']
|
156 |
+
else:
|
157 |
+
model.model[-1].concat = True
|
158 |
+
|
159 |
+
torch.onnx.export(model, img, f, verbose=False, opset_version=12, input_names=['images'],
|
160 |
+
output_names=output_names,
|
161 |
+
dynamic_axes=dynamic_axes)
|
162 |
+
|
163 |
+
# Checks
|
164 |
+
onnx_model = onnx.load(f) # load onnx model
|
165 |
+
onnx.checker.check_model(onnx_model) # check onnx model
|
166 |
+
|
167 |
+
if opt.end2end and opt.max_wh is None:
|
168 |
+
for i in onnx_model.graph.output:
|
169 |
+
for j in i.type.tensor_type.shape.dim:
|
170 |
+
j.dim_param = str(shapes.pop(0))
|
171 |
+
|
172 |
+
# print(onnx.helper.printable_graph(onnx_model.graph)) # print a human readable model
|
173 |
+
|
174 |
+
# # Metadata
|
175 |
+
# d = {'stride': int(max(model.stride))}
|
176 |
+
# for k, v in d.items():
|
177 |
+
# meta = onnx_model.metadata_props.add()
|
178 |
+
# meta.key, meta.value = k, str(v)
|
179 |
+
# onnx.save(onnx_model, f)
|
180 |
+
|
181 |
+
if opt.simplify:
|
182 |
+
try:
|
183 |
+
import onnxsim
|
184 |
+
|
185 |
+
print('\nStarting to simplify ONNX...')
|
186 |
+
onnx_model, check = onnxsim.simplify(onnx_model)
|
187 |
+
assert check, 'assert check failed'
|
188 |
+
except Exception as e:
|
189 |
+
print(f'Simplifier failure: {e}')
|
190 |
+
|
191 |
+
# print(onnx.helper.printable_graph(onnx_model.graph)) # print a human readable model
|
192 |
+
onnx.save(onnx_model,f)
|
193 |
+
print('ONNX export success, saved as %s' % f)
|
194 |
+
|
195 |
+
if opt.include_nms:
|
196 |
+
print('Registering NMS plugin for ONNX...')
|
197 |
+
mo = RegisterNMS(f)
|
198 |
+
mo.register_nms()
|
199 |
+
mo.save(f)
|
200 |
+
|
201 |
+
except Exception as e:
|
202 |
+
print('ONNX export failure: %s' % e)
|
203 |
+
|
204 |
+
# Finish
|
205 |
+
print('\nExport complete (%.2fs). Visualize with https://github.com/lutzroeder/netron.' % (time.time() - t))
|
figure/horses_prediction.jpg
ADDED
figure/mask.png
ADDED
figure/performance.png
ADDED
figure/pose.png
ADDED
figure/tennis.jpg
ADDED