AdithyaSNair commited on
Commit
b394f4b
β€’
1 Parent(s): 2032159

App and requirements

Browse files
Files changed (2) hide show
  1. app.py +108 -0
  2. requirements.txt +6 -0
app.py ADDED
@@ -0,0 +1,108 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ """ Gradio PCOS Prediction .ipynb
3
+
4
+ Automatically generated by Colaboratory.
5
+
6
+ The original file is located at
7
+ https://colab.research.google.com/drive/1W2dPPr1tHmTDgMgZML6C1Ch-4p_tOeZR
8
+ """
9
+
10
+ import pandas as pd
11
+ import gradio as gr
12
+ import numpy as np
13
+ import seaborn as sns
14
+ import matplotlib.pyplot as plt
15
+ import sklearn
16
+ from sklearn import tree
17
+ from sklearn.linear_model import LinearRegression
18
+ from sklearn.linear_model import LogisticRegression
19
+ from sklearn.tree import DecisionTreeClassifier
20
+ from sklearn.preprocessing import scale
21
+ from sklearn.model_selection import train_test_split
22
+ from sklearn.metrics import confusion_matrix
23
+ from sklearn.preprocessing import StandardScaler
24
+ def main(Follicle_No_Right,Follicle_No_Left,Skin_darkening,Hair_growth,Weight_gain,Cycle):
25
+ url="https://raw.githubusercontent.com/Athulg19/datasets/main/PCOS_clean_data_without_infertility.csv"
26
+ data = pd.read_csv(url)
27
+ data=pd.DataFrame(data)
28
+ data=data.astype(np.float64)
29
+ data.dtypes
30
+ correlation=data.corrwith(data['PCOS (Y/N)']).abs().sort_values(ascending=False)
31
+ correlation=correlation[correlation>0.4].index
32
+ data=data[correlation]
33
+ arr=data.values
34
+ X=arr[:,1:6]
35
+ Y=arr[:,0]
36
+ scaler=StandardScaler().fit(X)
37
+ rescaledX=scaler.transform(X)
38
+ np.set_printoptions(precision=3)
39
+ y=data['PCOS (Y/N)']
40
+ x=data.drop(['PCOS (Y/N)'],axis=1)
41
+ X_train,X_test,y_train,y_test = train_test_split(x,y,test_size=.25)
42
+ logistic = LogisticRegression()
43
+ logistic.fit(X_train,y_train)
44
+ data = {'Follicle No. (R)':Follicle_No_Right,'Follicle No. (L)':Follicle_No_Left,'Skin darkening (Y/N)':Skin_darkening,'hair growth(Y/N)':Hair_growth,'Weight gain(Y/N)':Weight_gain,'Cycle(R/I)':Cycle}
45
+ index = [0]
46
+ cust_df = pd.DataFrame(data, index)
47
+ costpredLog = logistic.predict(cust_df)
48
+ if costpredLog ==0:
49
+ Prediction = "There is less chance for the patient to catch PCOS"
50
+ else:
51
+ Prediction = "There is more chance for the patient to catch PCOS."
52
+ return Prediction
53
+
54
+ iface = gr.Interface(fn = main,
55
+
56
+ inputs =['number','number','number','number','number','number'],
57
+
58
+ outputs =['text'],
59
+
60
+ title="Onset of PCOS prediction",
61
+
62
+ description =''' Description
63
+
64
+ Polycystic ovary syndrome (PCOS) is a problem with hormones that happens during the reproductive years. If you have PCOS, you may not have periods very often.
65
+ Or you may have periods that last many days. You may also have too much of a hormone called androgen in your body.
66
+ With PCOS, many small sacs of fluid develop along the outer edge of the ovary. These are called cysts. The small fluid-filled cysts contain immature eggs.
67
+ These are called follicles. The follicles fail to regularly release eggs.
68
+ The exact cause of PCOS is unknown. Early diagnosis and treatment along with weight loss may lower the risk of long-term complications such as type 2 diabetes and heart disease.
69
+
70
+ Output0 - Describes the Prediction made
71
+
72
+
73
+ More details about the Inputs taken and how they needed to be taken are given below:
74
+
75
+ Follicle_No_Right = Number of follicles is in Right Overy
76
+ Follicle_No_Left = Number of follicles is in Left Ovary
77
+ Skin_darkening = yes(1)/No(0)
78
+ Hair_growth = yes(1)/No(0)
79
+ Weight_gain = yes(1)/No(0)
80
+ Cycle = If it is Regular (0) or Irregular (1)
81
+
82
+
83
+ ''',
84
+ article='''
85
+ Complications of PCOS can include:
86
+
87
+ * Infertility
88
+
89
+ * Gestational diabetes or pregnancy-induced high blood pressure
90
+
91
+ * Miscarriage or premature birth
92
+
93
+ * Nonalcoholic steatohepatitis β€” a severe liver inflammation caused by fat accumulation in the liver
94
+
95
+ * Metabolic syndrome β€” a cluster of conditions including high blood pressure,
96
+ high blood sugar, and abnormal cholesterol or triglyceride levels that significantly increase your risk of cardiovascular disease
97
+
98
+ * Type 2 diabetes or prediabetes
99
+
100
+ * Sleep apnea
101
+
102
+ * Depression, anxiety and eating disorders
103
+
104
+ * Abnormal uterine bleeding
105
+
106
+ * Cancer of the uterine lining (endometrial cancer)''')
107
+
108
+ iface.launch(debug =True)
requirements.txt ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ gradio
2
+ numpy
3
+ pandas
4
+ matplotlib
5
+ scikit-learn
6
+ seaborn