Spaces:
Running
on
Zero
Running
on
Zero
VARAG initial commit - Adithya s K
Browse files- app.py +475 -0
- packages.txt +1 -0
- requirements.txt +20 -0
app.py
ADDED
@@ -0,0 +1,475 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import os
|
3 |
+
import lancedb
|
4 |
+
from sentence_transformers import SentenceTransformer
|
5 |
+
from dotenv import load_dotenv
|
6 |
+
from typing import List
|
7 |
+
from PIL import Image
|
8 |
+
import base64
|
9 |
+
import io
|
10 |
+
import time
|
11 |
+
from collections import namedtuple
|
12 |
+
import pandas as pd
|
13 |
+
import concurrent.futures
|
14 |
+
from varag.rag import SimpleRAG, VisionRAG, ColpaliRAG, HybridColpaliRAG
|
15 |
+
from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor
|
16 |
+
from qwen_vl_utils import process_vision_info
|
17 |
+
from varag.chunking import FixedTokenChunker
|
18 |
+
from varag.utils import get_model_colpali
|
19 |
+
import argparse
|
20 |
+
import spaces
|
21 |
+
import torch
|
22 |
+
|
23 |
+
load_dotenv()
|
24 |
+
|
25 |
+
# Initialize shared database
|
26 |
+
shared_db = lancedb.connect("~/rag_demo_db")
|
27 |
+
|
28 |
+
|
29 |
+
@spaces.GPU
|
30 |
+
def get_all_model():
|
31 |
+
# Initialize embedding models
|
32 |
+
# text_embedding_model = SentenceTransformer("all-MiniLM-L6-v2", trust_remote_code=True)
|
33 |
+
text_embedding_model = SentenceTransformer(
|
34 |
+
"BAAI/bge-base-en", trust_remote_code=True
|
35 |
+
)
|
36 |
+
# text_embedding_model = SentenceTransformer("BAAI/bge-large-en-v1.5", trust_remote_code=True)
|
37 |
+
# text_embedding_model = SentenceTransformer("BAAI/bge-small-en-v1.5", trust_remote_code=True)
|
38 |
+
image_embedding_model = SentenceTransformer(
|
39 |
+
"jinaai/jina-clip-v1", trust_remote_code=True
|
40 |
+
)
|
41 |
+
colpali_model, colpali_processor = get_model_colpali("vidore/colpali-v1.2")
|
42 |
+
|
43 |
+
return text_embedding_model, image_embedding_model, colpali_model, colpali_processor
|
44 |
+
|
45 |
+
|
46 |
+
text_embedding_model, image_embedding_model, colpali_model, colpali_processor = (
|
47 |
+
get_all_model()
|
48 |
+
)
|
49 |
+
|
50 |
+
# Initialize RAG instances
|
51 |
+
simple_rag = SimpleRAG(
|
52 |
+
text_embedding_model=text_embedding_model, db=shared_db, table_name="simpleDemo"
|
53 |
+
)
|
54 |
+
vision_rag = VisionRAG(
|
55 |
+
image_embedding_model=image_embedding_model, db=shared_db, table_name="visionDemo"
|
56 |
+
)
|
57 |
+
colpali_rag = ColpaliRAG(
|
58 |
+
colpali_model=colpali_model,
|
59 |
+
colpali_processor=colpali_processor,
|
60 |
+
db=shared_db,
|
61 |
+
table_name="colpaliDemo",
|
62 |
+
)
|
63 |
+
hybrid_rag = HybridColpaliRAG(
|
64 |
+
colpali_model=colpali_model,
|
65 |
+
colpali_processor=colpali_processor,
|
66 |
+
image_embedding_model=image_embedding_model,
|
67 |
+
db=shared_db,
|
68 |
+
table_name="hybridDemo",
|
69 |
+
)
|
70 |
+
|
71 |
+
|
72 |
+
IngestResult = namedtuple("IngestResult", ["status_text", "progress_table"])
|
73 |
+
|
74 |
+
|
75 |
+
@spaces.GPU
|
76 |
+
def ingest_data(pdf_files, use_ocr, chunk_size, progress=gr.Progress()):
|
77 |
+
file_paths = [pdf_file.name for pdf_file in pdf_files]
|
78 |
+
total_start_time = time.time()
|
79 |
+
progress_data = []
|
80 |
+
|
81 |
+
# SimpleRAG
|
82 |
+
yield IngestResult(
|
83 |
+
status_text="Starting SimpleRAG ingestion...\n",
|
84 |
+
progress_table=pd.DataFrame(progress_data),
|
85 |
+
)
|
86 |
+
start_time = time.time()
|
87 |
+
simple_rag.index(
|
88 |
+
file_paths,
|
89 |
+
recursive=False,
|
90 |
+
chunking_strategy=FixedTokenChunker(chunk_size=chunk_size),
|
91 |
+
metadata={"source": "gradio_upload"},
|
92 |
+
overwrite=True,
|
93 |
+
verbose=True,
|
94 |
+
ocr=use_ocr,
|
95 |
+
)
|
96 |
+
simple_time = time.time() - start_time
|
97 |
+
progress_data.append(
|
98 |
+
{"Technique": "SimpleRAG", "Time Taken (s)": f"{simple_time:.2f}"}
|
99 |
+
)
|
100 |
+
yield IngestResult(
|
101 |
+
status_text=f"SimpleRAG ingestion complete. Time taken: {simple_time:.2f} seconds\n\n",
|
102 |
+
progress_table=pd.DataFrame(progress_data),
|
103 |
+
)
|
104 |
+
# progress(0.25, desc="SimpleRAG complete")
|
105 |
+
|
106 |
+
# VisionRAG
|
107 |
+
yield IngestResult(
|
108 |
+
status_text="Starting VisionRAG ingestion...\n",
|
109 |
+
progress_table=pd.DataFrame(progress_data),
|
110 |
+
)
|
111 |
+
start_time = time.time()
|
112 |
+
vision_rag.index(file_paths, overwrite=False, recursive=False, verbose=True)
|
113 |
+
vision_time = time.time() - start_time
|
114 |
+
progress_data.append(
|
115 |
+
{"Technique": "VisionRAG", "Time Taken (s)": f"{vision_time:.2f}"}
|
116 |
+
)
|
117 |
+
yield IngestResult(
|
118 |
+
status_text=f"VisionRAG ingestion complete. Time taken: {vision_time:.2f} seconds\n\n",
|
119 |
+
progress_table=pd.DataFrame(progress_data),
|
120 |
+
)
|
121 |
+
# progress(0.5, desc="VisionRAG complete")
|
122 |
+
|
123 |
+
# ColpaliRAG
|
124 |
+
yield IngestResult(
|
125 |
+
status_text="Starting ColpaliRAG ingestion...\n",
|
126 |
+
progress_table=pd.DataFrame(progress_data),
|
127 |
+
)
|
128 |
+
start_time = time.time()
|
129 |
+
colpali_rag.index(file_paths, overwrite=False, recursive=False, verbose=True)
|
130 |
+
colpali_time = time.time() - start_time
|
131 |
+
progress_data.append(
|
132 |
+
{"Technique": "ColpaliRAG", "Time Taken (s)": f"{colpali_time:.2f}"}
|
133 |
+
)
|
134 |
+
yield IngestResult(
|
135 |
+
status_text=f"ColpaliRAG ingestion complete. Time taken: {colpali_time:.2f} seconds\n\n",
|
136 |
+
progress_table=pd.DataFrame(progress_data),
|
137 |
+
)
|
138 |
+
# progress(0.75, desc="ColpaliRAG complete")
|
139 |
+
|
140 |
+
# HybridColpaliRAG
|
141 |
+
yield IngestResult(
|
142 |
+
status_text="Starting HybridColpaliRAG ingestion...\n",
|
143 |
+
progress_table=pd.DataFrame(progress_data),
|
144 |
+
)
|
145 |
+
start_time = time.time()
|
146 |
+
hybrid_rag.index(file_paths, overwrite=False, recursive=False, verbose=True)
|
147 |
+
hybrid_time = time.time() - start_time
|
148 |
+
progress_data.append(
|
149 |
+
{"Technique": "HybridColpaliRAG", "Time Taken (s)": f"{hybrid_time:.2f}"}
|
150 |
+
)
|
151 |
+
yield IngestResult(
|
152 |
+
status_text=f"HybridColpaliRAG ingestion complete. Time taken: {hybrid_time:.2f} seconds\n\n",
|
153 |
+
progress_table=pd.DataFrame(progress_data),
|
154 |
+
)
|
155 |
+
# progress(1.0, desc="HybridColpaliRAG complete")
|
156 |
+
|
157 |
+
total_time = time.time() - total_start_time
|
158 |
+
progress_data.append({"Technique": "Total", "Time Taken (s)": f"{total_time:.2f}"})
|
159 |
+
yield IngestResult(
|
160 |
+
status_text=f"Total ingestion time: {total_time:.2f} seconds",
|
161 |
+
progress_table=pd.DataFrame(progress_data),
|
162 |
+
)
|
163 |
+
|
164 |
+
|
165 |
+
@spaces.GPU
|
166 |
+
def retrieve_data(query, top_k, sequential=False):
|
167 |
+
results = {}
|
168 |
+
timings = {}
|
169 |
+
|
170 |
+
def retrieve_simple():
|
171 |
+
start_time = time.time()
|
172 |
+
simple_results = simple_rag.search(query, k=top_k)
|
173 |
+
|
174 |
+
print(simple_results)
|
175 |
+
|
176 |
+
simple_context = []
|
177 |
+
for i, r in enumerate(simple_results, 1):
|
178 |
+
context_piece = f"Result {i}:\n"
|
179 |
+
context_piece += f"Source: {r.get('document_name', 'Unknown')}\n"
|
180 |
+
context_piece += f"Chunk Index: {r.get('chunk_index', 'Unknown')}\n"
|
181 |
+
|
182 |
+
context_piece += f"Content:\n{r['text']}\n"
|
183 |
+
context_piece += "-" * 40 + "\n" # Separator
|
184 |
+
simple_context.append(context_piece)
|
185 |
+
|
186 |
+
simple_context = "\n".join(simple_context)
|
187 |
+
end_time = time.time()
|
188 |
+
return "SimpleRAG", simple_context, end_time - start_time
|
189 |
+
|
190 |
+
def retrieve_vision():
|
191 |
+
start_time = time.time()
|
192 |
+
vision_results = vision_rag.search(query, k=top_k)
|
193 |
+
vision_images = [r["image"] for r in vision_results]
|
194 |
+
end_time = time.time()
|
195 |
+
return "VisionRAG", vision_images, end_time - start_time
|
196 |
+
|
197 |
+
def retrieve_colpali():
|
198 |
+
start_time = time.time()
|
199 |
+
colpali_results = colpali_rag.search(query, k=top_k)
|
200 |
+
colpali_images = [r["image"] for r in colpali_results]
|
201 |
+
end_time = time.time()
|
202 |
+
return "ColpaliRAG", colpali_images, end_time - start_time
|
203 |
+
|
204 |
+
def retrieve_hybrid():
|
205 |
+
start_time = time.time()
|
206 |
+
hybrid_results = hybrid_rag.search(query, k=top_k, use_image_search=True)
|
207 |
+
hybrid_images = [r["image"] for r in hybrid_results]
|
208 |
+
end_time = time.time()
|
209 |
+
return "HybridColpaliRAG", hybrid_images, end_time - start_time
|
210 |
+
|
211 |
+
retrieval_functions = [
|
212 |
+
retrieve_simple,
|
213 |
+
retrieve_vision,
|
214 |
+
retrieve_colpali,
|
215 |
+
retrieve_hybrid,
|
216 |
+
]
|
217 |
+
|
218 |
+
if sequential:
|
219 |
+
for func in retrieval_functions:
|
220 |
+
rag_type, content, timing = func()
|
221 |
+
results[rag_type] = content
|
222 |
+
timings[rag_type] = timing
|
223 |
+
else:
|
224 |
+
with concurrent.futures.ThreadPoolExecutor() as executor:
|
225 |
+
future_results = [executor.submit(func) for func in retrieval_functions]
|
226 |
+
for future in concurrent.futures.as_completed(future_results):
|
227 |
+
rag_type, content, timing = future.result()
|
228 |
+
results[rag_type] = content
|
229 |
+
timings[rag_type] = timing
|
230 |
+
|
231 |
+
return results, timings
|
232 |
+
|
233 |
+
|
234 |
+
# @spaces.GPU
|
235 |
+
# def query_data(query, retrieved_results):
|
236 |
+
# results = {}
|
237 |
+
|
238 |
+
# # SimpleRAG
|
239 |
+
# simple_context = retrieved_results["SimpleRAG"]
|
240 |
+
# simple_response = llm.query(
|
241 |
+
# context=simple_context,
|
242 |
+
# system_prompt="Given the below information answer the questions",
|
243 |
+
# query=query,
|
244 |
+
# )
|
245 |
+
# results["SimpleRAG"] = {"response": simple_response, "context": simple_context}
|
246 |
+
|
247 |
+
# # VisionRAG
|
248 |
+
# vision_images = retrieved_results["VisionRAG"]
|
249 |
+
# vision_context = f"Query: {query}\n\nRelevant image information:\n" + "\n".join(
|
250 |
+
# [f"Image {i+1}" for i in range(len(vision_images))]
|
251 |
+
# )
|
252 |
+
# vision_response = vlm.query(vision_context, vision_images, max_tokens=500)
|
253 |
+
# results["VisionRAG"] = {
|
254 |
+
# "response": vision_response,
|
255 |
+
# "context": vision_context,
|
256 |
+
# "images": vision_images,
|
257 |
+
# }
|
258 |
+
|
259 |
+
# # ColpaliRAG
|
260 |
+
# colpali_images = retrieved_results["ColpaliRAG"]
|
261 |
+
# colpali_context = f"Query: {query}\n\nRelevant image information:\n" + "\n".join(
|
262 |
+
# [f"Image {i+1}" for i in range(len(colpali_images))]
|
263 |
+
# )
|
264 |
+
# colpali_response = vlm.query(colpali_context, colpali_images, max_tokens=500)
|
265 |
+
# results["ColpaliRAG"] = {
|
266 |
+
# "response": colpali_response,
|
267 |
+
# "context": colpali_context,
|
268 |
+
# "images": colpali_images,
|
269 |
+
# }
|
270 |
+
|
271 |
+
# # HybridColpaliRAG
|
272 |
+
# hybrid_images = retrieved_results["HybridColpaliRAG"]
|
273 |
+
# hybrid_context = f"Query: {query}\n\nRelevant image information:\n" + "\n".join(
|
274 |
+
# [f"Image {i+1}" for i in range(len(hybrid_images))]
|
275 |
+
# )
|
276 |
+
# hybrid_response = vlm.query(hybrid_context, hybrid_images, max_tokens=500)
|
277 |
+
# results["HybridColpaliRAG"] = {
|
278 |
+
# "response": hybrid_response,
|
279 |
+
# "context": hybrid_context,
|
280 |
+
# "images": hybrid_images,
|
281 |
+
# }
|
282 |
+
|
283 |
+
# return results
|
284 |
+
|
285 |
+
|
286 |
+
def update_api_key(api_key):
|
287 |
+
os.environ["OPENAI_API_KEY"] = api_key
|
288 |
+
return "API key updated successfully."
|
289 |
+
|
290 |
+
|
291 |
+
def change_table(simple_table, vision_table, colpali_table, hybrid_table):
|
292 |
+
simple_rag.change_table(simple_table)
|
293 |
+
vision_rag.change_table(vision_table)
|
294 |
+
colpali_rag.change_table(colpali_table)
|
295 |
+
hybrid_rag.change_table(hybrid_table)
|
296 |
+
return "Table names updated successfully."
|
297 |
+
|
298 |
+
|
299 |
+
def gradio_interface():
|
300 |
+
with gr.Blocks(
|
301 |
+
theme=gr.themes.Monochrome(radius_size=gr.themes.sizes.radius_none)
|
302 |
+
) as demo:
|
303 |
+
gr.Markdown(
|
304 |
+
"""
|
305 |
+
# 👁️👁️ Vision RAG Playground
|
306 |
+
|
307 |
+
### Explore and Compare Vision-Augmented Retrieval Techniques
|
308 |
+
Built on [VARAG](https://github.com/adithya-s-k/VARAG) - Vision-Augmented Retrieval and Generation
|
309 |
+
|
310 |
+
**[⭐ Star the Repository](https://github.com/adithya-s-k/VARAG)** to support the project!
|
311 |
+
|
312 |
+
1. **Simple RAG**: Text-based retrieval with OCR support for scanned documents.
|
313 |
+
2. **Vision RAG**: Combines text and image retrieval using cross-modal embeddings.
|
314 |
+
3. **ColPali RAG**: Embeds entire document pages as images for layout-aware retrieval.
|
315 |
+
4. **Hybrid ColPali RAG**: Two-stage retrieval combining image embeddings and ColPali's token-level matching.
|
316 |
+
|
317 |
+
"""
|
318 |
+
)
|
319 |
+
|
320 |
+
with gr.Tab("Ingest Data"):
|
321 |
+
pdf_input = gr.File(
|
322 |
+
label="Upload PDF(s)", file_count="multiple", file_types=["pdf"]
|
323 |
+
)
|
324 |
+
use_ocr = gr.Checkbox(label="Use OCR (for SimpleRAG)")
|
325 |
+
chunk_size = gr.Slider(
|
326 |
+
50, 5000, value=200, step=10, label="Chunk Size (for SimpleRAG)"
|
327 |
+
)
|
328 |
+
ingest_button = gr.Button("Ingest PDFs")
|
329 |
+
ingest_output = gr.Markdown(
|
330 |
+
label="Ingestion Status :",
|
331 |
+
)
|
332 |
+
progress_table = gr.DataFrame(
|
333 |
+
label="Ingestion Progress", headers=["Technique", "Time Taken (s)"]
|
334 |
+
)
|
335 |
+
|
336 |
+
with gr.Tab("Retrieve and Query Data"):
|
337 |
+
query_input = gr.Textbox(label="Enter your query")
|
338 |
+
top_k_slider = gr.Slider(1, 10, value=3, step=1, label="Top K Results")
|
339 |
+
sequential_checkbox = gr.Checkbox(label="Sequential Retrieval", value=False)
|
340 |
+
retrieve_button = gr.Button("Retrieve")
|
341 |
+
query_button = gr.Button("Query")
|
342 |
+
|
343 |
+
retrieval_timing = gr.DataFrame(
|
344 |
+
label="Retrieval Timings", headers=["RAG Type", "Time (s)"]
|
345 |
+
)
|
346 |
+
|
347 |
+
with gr.Row():
|
348 |
+
with gr.Column():
|
349 |
+
with gr.Accordion("SimpleRAG", open=True):
|
350 |
+
simple_content = gr.Textbox(
|
351 |
+
label="SimpleRAG Content", lines=10, max_lines=10
|
352 |
+
)
|
353 |
+
simple_response = gr.Markdown(label="SimpleRAG Response")
|
354 |
+
with gr.Column():
|
355 |
+
with gr.Accordion("VisionRAG", open=True):
|
356 |
+
vision_gallery = gr.Gallery(label="VisionRAG Images")
|
357 |
+
vision_response = gr.Markdown(label="VisionRAG Response")
|
358 |
+
|
359 |
+
with gr.Row():
|
360 |
+
with gr.Column():
|
361 |
+
with gr.Accordion("ColpaliRAG", open=True):
|
362 |
+
colpali_gallery = gr.Gallery(label="ColpaliRAG Images")
|
363 |
+
colpali_response = gr.Markdown(label="ColpaliRAG Response")
|
364 |
+
with gr.Column():
|
365 |
+
with gr.Accordion("HybridColpaliRAG", open=True):
|
366 |
+
hybrid_gallery = gr.Gallery(label="HybridColpaliRAG Images")
|
367 |
+
hybrid_response = gr.Markdown(label="HybridColpaliRAG Response")
|
368 |
+
|
369 |
+
with gr.Tab("Settings"):
|
370 |
+
api_key_input = gr.Textbox(label="OpenAI API Key", type="password")
|
371 |
+
update_api_button = gr.Button("Update API Key")
|
372 |
+
api_update_status = gr.Textbox(label="API Update Status")
|
373 |
+
|
374 |
+
simple_table_input = gr.Textbox(
|
375 |
+
label="SimpleRAG Table Name", value="simpleDemo"
|
376 |
+
)
|
377 |
+
vision_table_input = gr.Textbox(
|
378 |
+
label="VisionRAG Table Name", value="visionDemo"
|
379 |
+
)
|
380 |
+
colpali_table_input = gr.Textbox(
|
381 |
+
label="ColpaliRAG Table Name", value="colpaliDemo"
|
382 |
+
)
|
383 |
+
hybrid_table_input = gr.Textbox(
|
384 |
+
label="HybridColpaliRAG Table Name", value="hybridDemo"
|
385 |
+
)
|
386 |
+
update_table_button = gr.Button("Update Table Names")
|
387 |
+
table_update_status = gr.Textbox(label="Table Update Status")
|
388 |
+
|
389 |
+
retrieved_results = gr.State({})
|
390 |
+
|
391 |
+
def update_retrieval_results(query, top_k, sequential):
|
392 |
+
results, timings = retrieve_data(query, top_k, sequential)
|
393 |
+
timing_df = pd.DataFrame(
|
394 |
+
list(timings.items()), columns=["RAG Type", "Time (s)"]
|
395 |
+
)
|
396 |
+
return (
|
397 |
+
results["SimpleRAG"],
|
398 |
+
results["VisionRAG"],
|
399 |
+
results["ColpaliRAG"],
|
400 |
+
results["HybridColpaliRAG"],
|
401 |
+
timing_df,
|
402 |
+
results,
|
403 |
+
)
|
404 |
+
|
405 |
+
retrieve_button.click(
|
406 |
+
update_retrieval_results,
|
407 |
+
inputs=[query_input, top_k_slider, sequential_checkbox],
|
408 |
+
outputs=[
|
409 |
+
simple_content,
|
410 |
+
vision_gallery,
|
411 |
+
colpali_gallery,
|
412 |
+
hybrid_gallery,
|
413 |
+
retrieval_timing,
|
414 |
+
retrieved_results,
|
415 |
+
],
|
416 |
+
)
|
417 |
+
|
418 |
+
# def update_query_results(query, retrieved_results):
|
419 |
+
# results = query_data(query, retrieved_results)
|
420 |
+
# return (
|
421 |
+
# results["SimpleRAG"]["response"],
|
422 |
+
# results["VisionRAG"]["response"],
|
423 |
+
# results["ColpaliRAG"]["response"],
|
424 |
+
# results["HybridColpaliRAG"]["response"],
|
425 |
+
# )
|
426 |
+
|
427 |
+
# query_button.click(
|
428 |
+
# update_query_results,
|
429 |
+
# inputs=[query_input, retrieved_results],
|
430 |
+
# outputs=[
|
431 |
+
# simple_response,
|
432 |
+
# vision_response,
|
433 |
+
# colpali_response,
|
434 |
+
# hybrid_response,
|
435 |
+
# ],
|
436 |
+
# )
|
437 |
+
|
438 |
+
ingest_button.click(
|
439 |
+
ingest_data,
|
440 |
+
inputs=[pdf_input, use_ocr, chunk_size],
|
441 |
+
outputs=[ingest_output, progress_table],
|
442 |
+
)
|
443 |
+
|
444 |
+
update_api_button.click(
|
445 |
+
update_api_key, inputs=[api_key_input], outputs=api_update_status
|
446 |
+
)
|
447 |
+
|
448 |
+
update_table_button.click(
|
449 |
+
change_table,
|
450 |
+
inputs=[
|
451 |
+
simple_table_input,
|
452 |
+
vision_table_input,
|
453 |
+
colpali_table_input,
|
454 |
+
hybrid_table_input,
|
455 |
+
],
|
456 |
+
outputs=table_update_status,
|
457 |
+
)
|
458 |
+
|
459 |
+
return demo
|
460 |
+
|
461 |
+
|
462 |
+
# Parse command-line arguments
|
463 |
+
def parse_args():
|
464 |
+
parser = argparse.ArgumentParser(description="VisionRAG Gradio App")
|
465 |
+
parser.add_argument(
|
466 |
+
"--share", action="store_true", help="Enable Gradio share feature"
|
467 |
+
)
|
468 |
+
return parser.parse_args()
|
469 |
+
|
470 |
+
|
471 |
+
# Launch the app
|
472 |
+
if __name__ == "__main__":
|
473 |
+
args = parse_args()
|
474 |
+
app = gradio_interface()
|
475 |
+
app.launch(share=args.share)
|
packages.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
poppler-utils
|
requirements.txt
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
git+https://github.com/huggingface/transformers
|
2 |
+
torch
|
3 |
+
lancedb
|
4 |
+
colpali-engine
|
5 |
+
pdf2image
|
6 |
+
pypdf
|
7 |
+
pymupdf
|
8 |
+
timm
|
9 |
+
einops
|
10 |
+
sentence-transformers
|
11 |
+
tiktoken
|
12 |
+
docling
|
13 |
+
pdf2image
|
14 |
+
GPUtil
|
15 |
+
accelerate==0.30.1
|
16 |
+
mteb>=1.12.22
|
17 |
+
qwen-vl-utils
|
18 |
+
torchvision
|
19 |
+
fastapi<0.113.0
|
20 |
+
git+https://github.com/adithya-s-k/VARAG
|