Spaces:
Sleeping
Sleeping
AdilzhanB
commited on
Commit
Β·
60fadf0
0
Parent(s):
Initial commit
Browse files- app.py +334 -0
- requirements.txt +6 -0
app.py
ADDED
@@ -0,0 +1,334 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import gradio as gr
|
3 |
+
from textblob import TextBlob
|
4 |
+
from typing import Dict, Any, List
|
5 |
+
import asyncio
|
6 |
+
|
7 |
+
class SentimentMCPServer:
|
8 |
+
"""MCP Server for Sentiment Analysis using TextBlob"""
|
9 |
+
|
10 |
+
def __init__(self):
|
11 |
+
self.name = "sentiment-analyzer"
|
12 |
+
self.version = "1.0.0"
|
13 |
+
|
14 |
+
async def get_tools(self) -> List[Dict]:
|
15 |
+
"""Returns the list of tools available in this MCP"""
|
16 |
+
return [
|
17 |
+
{
|
18 |
+
"name": "analyze_sentiment",
|
19 |
+
"description": "Analyze the sentiment of text using TextBlob NLP",
|
20 |
+
"inputSchema": {
|
21 |
+
"type": "object",
|
22 |
+
"properties": {
|
23 |
+
"text": {
|
24 |
+
"type": "string",
|
25 |
+
"description": "Text to analyze for sentiment"
|
26 |
+
},
|
27 |
+
"detailed": {
|
28 |
+
"type": "boolean",
|
29 |
+
"description": "Return detailed analysis including confidence and statistics",
|
30 |
+
"default": False
|
31 |
+
}
|
32 |
+
},
|
33 |
+
"required": ["text"]
|
34 |
+
}
|
35 |
+
},
|
36 |
+
{
|
37 |
+
"name": "batch_analyze",
|
38 |
+
"description": "Analyze sentiment for multiple texts at once",
|
39 |
+
"inputSchema": {
|
40 |
+
"type": "object",
|
41 |
+
"properties": {
|
42 |
+
"texts": {
|
43 |
+
"type": "array",
|
44 |
+
"items": {"type": "string"},
|
45 |
+
"description": "Array of texts to analyze"
|
46 |
+
}
|
47 |
+
},
|
48 |
+
"required": ["texts"]
|
49 |
+
}
|
50 |
+
},
|
51 |
+
{
|
52 |
+
"name": "sentiment_summary",
|
53 |
+
"description": "Get summary statistics for analyzed texts",
|
54 |
+
"inputSchema": {
|
55 |
+
"type": "object",
|
56 |
+
"properties": {
|
57 |
+
"texts": {
|
58 |
+
"type": "array",
|
59 |
+
"items": {"type": "string"}
|
60 |
+
}
|
61 |
+
},
|
62 |
+
"required": ["texts"]
|
63 |
+
}
|
64 |
+
}
|
65 |
+
]
|
66 |
+
|
67 |
+
async def call_tool(self, name: str, arguments: Dict) -> Dict:
|
68 |
+
"""Call the specified tool with the given arguments."""
|
69 |
+
if name == "analyze_sentiment":
|
70 |
+
return await self.analyze_sentiment(
|
71 |
+
arguments["text"],
|
72 |
+
arguments.get("detailed", False)
|
73 |
+
)
|
74 |
+
elif name == "batch_analyze":
|
75 |
+
return await self.batch_analyze(arguments["texts"])
|
76 |
+
elif name == "sentiment_summary":
|
77 |
+
return await self.sentiment_summary(arguments["texts"])
|
78 |
+
else:
|
79 |
+
raise ValueError(f"Unknown tool: {name}")
|
80 |
+
|
81 |
+
async def analyze_sentiment(self, text: str, detailed: bool = False) -> Dict[str, Any]:
|
82 |
+
"""Main sentiment analysis function"""
|
83 |
+
if not text or not text.strip():
|
84 |
+
return {"error": "Text cannot be empty"}
|
85 |
+
|
86 |
+
blob = TextBlob(text)
|
87 |
+
sentiment = blob.sentiment
|
88 |
+
|
89 |
+
# Base analysis result
|
90 |
+
result = {
|
91 |
+
"text": text[:100] + "..." if len(text) > 100 else text,
|
92 |
+
"polarity": round(sentiment.polarity, 3),
|
93 |
+
"subjectivity": round(sentiment.subjectivity, 3),
|
94 |
+
"assessment": self._get_assessment(sentiment.polarity)
|
95 |
+
}
|
96 |
+
|
97 |
+
# Detailed analysis
|
98 |
+
if detailed:
|
99 |
+
result.update({
|
100 |
+
"confidence": self._get_confidence(sentiment.polarity),
|
101 |
+
"word_count": len(text.split()),
|
102 |
+
"character_count": len(text),
|
103 |
+
"interpretation": self._get_interpretation(sentiment)
|
104 |
+
})
|
105 |
+
|
106 |
+
return result
|
107 |
+
|
108 |
+
async def batch_analyze(self, texts: List[str]) -> Dict[str, Any]:
|
109 |
+
"""Analyze sentiment for multiple texts"""
|
110 |
+
results = []
|
111 |
+
for i, text in enumerate(texts):
|
112 |
+
try:
|
113 |
+
result = await self.analyze_sentiment(text, detailed=True)
|
114 |
+
result["index"] = i
|
115 |
+
results.append(result)
|
116 |
+
except Exception as e:
|
117 |
+
results.append({"index": i, "error": str(e), "text": text})
|
118 |
+
|
119 |
+
return {"results": results, "total_analyzed": len(texts)}
|
120 |
+
|
121 |
+
async def sentiment_summary(self, texts: List[str]) -> Dict[str, Any]:
|
122 |
+
"""Generate summary statistics for a batch of texts"""
|
123 |
+
batch_result = await self.batch_analyze(texts)
|
124 |
+
results = batch_result["results"]
|
125 |
+
|
126 |
+
# Π€ΠΈΠ»ΡΡΡΡΠ΅ΠΌ ΡΡΠΏΠ΅ΡΠ½ΡΠ΅ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ
|
127 |
+
valid_results = [r for r in results if "error" not in r]
|
128 |
+
|
129 |
+
if not valid_results:
|
130 |
+
return {"error": "No valid results to summarize"}
|
131 |
+
|
132 |
+
polarities = [r["polarity"] for r in valid_results]
|
133 |
+
assessments = [r["assessment"] for r in valid_results]
|
134 |
+
|
135 |
+
# ΠΠΎΠ΄ΡΡΠ΅Ρ ΠΏΠΎ ΠΊΠ°ΡΠ΅Π³ΠΎΡΠΈΡΠΌ
|
136 |
+
positive = sum(1 for a in assessments if a == "positive")
|
137 |
+
negative = sum(1 for a in assessments if a == "negative")
|
138 |
+
neutral = sum(1 for a in assessments if a == "neutral")
|
139 |
+
|
140 |
+
return {
|
141 |
+
"total_texts": len(texts),
|
142 |
+
"analyzed": len(valid_results),
|
143 |
+
"average_polarity": round(sum(polarities) / len(polarities), 3),
|
144 |
+
"sentiment_distribution": {
|
145 |
+
"positive": positive,
|
146 |
+
"negative": negative,
|
147 |
+
"neutral": neutral
|
148 |
+
},
|
149 |
+
"percentages": {
|
150 |
+
"positive": round(positive / len(valid_results) * 100, 1),
|
151 |
+
"negative": round(negative / len(valid_results) * 100, 1),
|
152 |
+
"neutral": round(neutral / len(valid_results) * 100, 1)
|
153 |
+
}
|
154 |
+
}
|
155 |
+
|
156 |
+
def _get_assessment(self, polarity: float) -> str:
|
157 |
+
"""Sentiment assessment based on polarity"""
|
158 |
+
if polarity > 0.1:
|
159 |
+
return "positive"
|
160 |
+
elif polarity < -0.1:
|
161 |
+
return "negative"
|
162 |
+
else:
|
163 |
+
return "neutral"
|
164 |
+
|
165 |
+
def _get_confidence(self, polarity: float) -> str:
|
166 |
+
"""Confidence level based on polarity"""
|
167 |
+
abs_polarity = abs(polarity)
|
168 |
+
if abs_polarity >= 0.7:
|
169 |
+
return "high"
|
170 |
+
elif abs_polarity >= 0.3:
|
171 |
+
return "medium"
|
172 |
+
else:
|
173 |
+
return "low"
|
174 |
+
|
175 |
+
def _get_interpretation(self, sentiment) -> str:
|
176 |
+
"""Reult interpretation based on sentiment analysis"""
|
177 |
+
polarity = sentiment.polarity
|
178 |
+
subjectivity = sentiment.subjectivity
|
179 |
+
|
180 |
+
if subjectivity > 0.7:
|
181 |
+
subj_desc = "highly subjective (opinion-based)"
|
182 |
+
elif subjectivity > 0.3:
|
183 |
+
subj_desc = "moderately subjective"
|
184 |
+
else:
|
185 |
+
subj_desc = "objective (fact-based)"
|
186 |
+
|
187 |
+
if abs(polarity) > 0.5:
|
188 |
+
pol_desc = "strong sentiment"
|
189 |
+
elif abs(polarity) > 0.2:
|
190 |
+
pol_desc = "moderate sentiment"
|
191 |
+
else:
|
192 |
+
pol_desc = "neutral sentiment"
|
193 |
+
|
194 |
+
return f"This text shows {pol_desc} and is {subj_desc}."
|
195 |
+
|
196 |
+
# Global instance of the MCP server
|
197 |
+
mcp_server = SentimentMCPServer()
|
198 |
+
|
199 |
+
def sentiment_analysis(text: str) -> Dict[str, Any]:
|
200 |
+
"""Wrapper for Gradio interface to call MCP server"""
|
201 |
+
loop = asyncio.new_event_loop()
|
202 |
+
asyncio.set_event_loop(loop)
|
203 |
+
try:
|
204 |
+
result = loop.run_until_complete(
|
205 |
+
mcp_server.analyze_sentiment(text, detailed=True)
|
206 |
+
)
|
207 |
+
return result
|
208 |
+
finally:
|
209 |
+
loop.close()
|
210 |
+
|
211 |
+
def format_results(result: Dict[str, Any]) -> str:
|
212 |
+
"""Format the results for display in Gradio"""
|
213 |
+
if "error" in result:
|
214 |
+
return f"β **Error:** {result['error']}"
|
215 |
+
|
216 |
+
emoji_map = {"positive": "π", "negative": "π", "neutral": "π"}
|
217 |
+
polarity_color = "π’" if result["polarity"] > 0 else "π΄" if result["polarity"] < 0 else "π‘"
|
218 |
+
|
219 |
+
return f"""
|
220 |
+
## π MCP Sentiment Analysis Results
|
221 |
+
|
222 |
+
### {emoji_map[result['assessment']]} Assessment: **{result['assessment'].title()}**
|
223 |
+
|
224 |
+
### π Metrics:
|
225 |
+
- **Polarity:** {polarity_color} {result['polarity']}
|
226 |
+
- **Subjectivity:** π― {result['subjectivity']}
|
227 |
+
- **Confidence:** {result.get('confidence', 'N/A').title()}
|
228 |
+
|
229 |
+
### π Statistics:
|
230 |
+
- **Words:** {result.get('word_count', 'N/A')}
|
231 |
+
- **Characters:** {result.get('character_count', 'N/A')}
|
232 |
+
|
233 |
+
### π‘ Interpretation:
|
234 |
+
{result.get('interpretation', 'No interpretation available')}
|
235 |
+
|
236 |
+
---
|
237 |
+
*π This analysis is available via MCP protocol for AI assistants*
|
238 |
+
"""
|
239 |
+
|
240 |
+
# Gradio interface setup
|
241 |
+
with gr.Blocks(title="π― MCP Sentiment Analyzer") as demo:
|
242 |
+
gr.HTML("""
|
243 |
+
<h1 style="text-align: center; color: #667eea;">
|
244 |
+
π― MCP-Enabled Sentiment Analyzer
|
245 |
+
</h1>
|
246 |
+
<p style="text-align: center; color: #666;">
|
247 |
+
Advanced sentiment analysis with Model Context Protocol support
|
248 |
+
</p>
|
249 |
+
""")
|
250 |
+
|
251 |
+
with gr.Tab("π Single Analysis"):
|
252 |
+
text_input = gr.Textbox(
|
253 |
+
placeholder="Enter text for sentiment analysis...",
|
254 |
+
lines=5,
|
255 |
+
label="Text to Analyze"
|
256 |
+
)
|
257 |
+
analyze_btn = gr.Button("π Analyze", variant="primary")
|
258 |
+
output = gr.Markdown()
|
259 |
+
|
260 |
+
analyze_btn.click(
|
261 |
+
fn=lambda x: format_results(sentiment_analysis(x)),
|
262 |
+
inputs=text_input,
|
263 |
+
outputs=output
|
264 |
+
)
|
265 |
+
|
266 |
+
with gr.Tab("π Batch Analysis"):
|
267 |
+
batch_input = gr.Textbox(
|
268 |
+
placeholder="Enter multiple texts, one per line...",
|
269 |
+
lines=8,
|
270 |
+
label="Multiple Texts"
|
271 |
+
)
|
272 |
+
batch_btn = gr.Button("π Batch Analyze", variant="primary")
|
273 |
+
batch_output = gr.JSON(label="Batch Results")
|
274 |
+
|
275 |
+
def batch_analyze_wrapper(texts_str: str):
|
276 |
+
if not texts_str.strip():
|
277 |
+
return {"error": "Please enter some texts"}
|
278 |
+
|
279 |
+
texts = [line.strip() for line in texts_str.split('\n') if line.strip()]
|
280 |
+
loop = asyncio.new_event_loop()
|
281 |
+
asyncio.set_event_loop(loop)
|
282 |
+
try:
|
283 |
+
return loop.run_until_complete(mcp_server.batch_analyze(texts))
|
284 |
+
finally:
|
285 |
+
loop.close()
|
286 |
+
|
287 |
+
batch_btn.click(
|
288 |
+
fn=batch_analyze_wrapper,
|
289 |
+
inputs=batch_input,
|
290 |
+
outputs=batch_output
|
291 |
+
)
|
292 |
+
|
293 |
+
with gr.Tab("π Summary Stats"):
|
294 |
+
summary_input = gr.Textbox(
|
295 |
+
placeholder="Enter texts for summary statistics...",
|
296 |
+
lines=6,
|
297 |
+
label="Texts for Summary"
|
298 |
+
)
|
299 |
+
summary_btn = gr.Button("π Get Summary", variant="primary")
|
300 |
+
summary_output = gr.JSON(label="Summary Statistics")
|
301 |
+
|
302 |
+
def summary_wrapper(texts_str: str):
|
303 |
+
if not texts_str.strip():
|
304 |
+
return {"error": "Please enter some texts"}
|
305 |
+
|
306 |
+
texts = [line.strip() for line in texts_str.split('\n') if line.strip()]
|
307 |
+
loop = asyncio.new_event_loop()
|
308 |
+
asyncio.set_event_loop(loop)
|
309 |
+
try:
|
310 |
+
return loop.run_until_complete(mcp_server.sentiment_summary(texts))
|
311 |
+
finally:
|
312 |
+
loop.close()
|
313 |
+
|
314 |
+
summary_btn.click(
|
315 |
+
fn=summary_wrapper,
|
316 |
+
inputs=summary_input,
|
317 |
+
outputs=summary_output
|
318 |
+
)
|
319 |
+
|
320 |
+
if __name__ == "__main__":
|
321 |
+
print("π Starting MCP-Enabled Sentiment Analyzer...")
|
322 |
+
print("π‘ MCP Server: Available for AI assistant integration")
|
323 |
+
print("π§ Available MCP tools:")
|
324 |
+
print(" - analyze_sentiment: Single text analysis")
|
325 |
+
print(" - batch_analyze: Multiple texts analysis")
|
326 |
+
print(" - sentiment_summary: Statistical summary")
|
327 |
+
print("π Web UI: http://localhost:7860")
|
328 |
+
|
329 |
+
demo.launch(
|
330 |
+
mcp_server=True,
|
331 |
+
server_name="127.0.0.1",
|
332 |
+
server_port=7860,
|
333 |
+
inbrowser=True
|
334 |
+
)
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Minimal requirements for basic MCP Sentiment Analyzer
|
2 |
+
gradio>=4.0.0
|
3 |
+
textblob>=0.17.1
|
4 |
+
asyncio>=3.4.3
|
5 |
+
pydantic>=2.0.0
|
6 |
+
typing-extensions>=4.8.0
|