Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import numpy as np
|
| 4 |
+
from sentence_transformers import SentenceTransformer
|
| 5 |
+
from transformers import pipeline
|
| 6 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
| 7 |
+
from docx import Document
|
| 8 |
+
import io
|
| 9 |
+
|
| 10 |
+
class CarbonCreditDocGenerator:
|
| 11 |
+
def __init__(self):
|
| 12 |
+
self.sbert_model = SentenceTransformer('all-MiniLM-L6-v2')
|
| 13 |
+
self.nlg_pipeline = pipeline("text-generation", model="gpt2", max_length=500)
|
| 14 |
+
|
| 15 |
+
# Load your knowledge base here
|
| 16 |
+
self.knowledge_base = self.load_knowledge_base()
|
| 17 |
+
|
| 18 |
+
def load_knowledge_base(self):
|
| 19 |
+
# This should load your carbon credit domain knowledge
|
| 20 |
+
return [
|
| 21 |
+
"Carbon credits represent the reduction of one metric ton of carbon dioxide emissions.",
|
| 22 |
+
"Afforestation projects involve planting trees in areas where there were none before.",
|
| 23 |
+
"The Verified Carbon Standard (VCS) is a widely recognized certification for carbon credits.",
|
| 24 |
+
"Carbon credit projects must demonstrate additionality, meaning the reductions wouldn't have occurred without the project.",
|
| 25 |
+
"Monitoring, reporting, and verification (MRV) are crucial components of carbon credit projects.",
|
| 26 |
+
# Add more knowledge base entries...
|
| 27 |
+
]
|
| 28 |
+
|
| 29 |
+
def process_input_data(self, input_text):
|
| 30 |
+
# In a real scenario, you'd parse the input document more thoroughly
|
| 31 |
+
lines = input_text.split('\n')
|
| 32 |
+
data = {}
|
| 33 |
+
for line in lines:
|
| 34 |
+
if ':' in line:
|
| 35 |
+
key, value = line.split(':', 1)
|
| 36 |
+
data[key.strip()] = value.strip()
|
| 37 |
+
return data
|
| 38 |
+
|
| 39 |
+
def retrieve_relevant_knowledge(self, query, top_k=3):
|
| 40 |
+
query_embedding = self.sbert_model.encode([query])[0]
|
| 41 |
+
knowledge_embeddings = self.sbert_model.encode(self.knowledge_base)
|
| 42 |
+
|
| 43 |
+
similarities = cosine_similarity([query_embedding], knowledge_embeddings)[0]
|
| 44 |
+
top_indices = np.argsort(similarities)[-top_k:][::-1]
|
| 45 |
+
|
| 46 |
+
return [self.knowledge_base[i] for i in top_indices]
|
| 47 |
+
|
| 48 |
+
def generate_section_content(self, section_title, input_data, max_length=500):
|
| 49 |
+
query = f"Generate content for the '{section_title}' section of a carbon credit document."
|
| 50 |
+
relevant_knowledge = self.retrieve_relevant_knowledge(query)
|
| 51 |
+
|
| 52 |
+
context = f"Input data: {input_data}\n\nRelevant knowledge: {' '.join(relevant_knowledge)}"
|
| 53 |
+
prompt = f"{context}\n\nTask: {query}\n\nContent:"
|
| 54 |
+
|
| 55 |
+
generated_text = self.nlg_pipeline(prompt, max_length=max_length, num_return_sequences=1)[0]['generated_text']
|
| 56 |
+
|
| 57 |
+
# Apply corrective RAG
|
| 58 |
+
corrected_text = self.apply_corrective_rag(generated_text, input_data, relevant_knowledge)
|
| 59 |
+
|
| 60 |
+
return corrected_text
|
| 61 |
+
|
| 62 |
+
def apply_corrective_rag(self, generated_text, input_data, relevant_knowledge):
|
| 63 |
+
# This is a simplified version of corrective RAG
|
| 64 |
+
corrected_text = generated_text
|
| 65 |
+
|
| 66 |
+
# Ensure all input data is represented
|
| 67 |
+
for key, value in input_data.items():
|
| 68 |
+
if value.lower() not in corrected_text.lower():
|
| 69 |
+
corrected_text += f" {key}: {value}."
|
| 70 |
+
|
| 71 |
+
# Ensure relevant knowledge is incorporated
|
| 72 |
+
for knowledge in relevant_knowledge:
|
| 73 |
+
if knowledge.lower() not in corrected_text.lower():
|
| 74 |
+
corrected_text += f" {knowledge}"
|
| 75 |
+
|
| 76 |
+
return corrected_text
|
| 77 |
+
|
| 78 |
+
def create_document(self, input_text):
|
| 79 |
+
doc = Document()
|
| 80 |
+
doc.add_heading('Carbon Credit Project Document', 0)
|
| 81 |
+
|
| 82 |
+
input_data = self.process_input_data(input_text)
|
| 83 |
+
|
| 84 |
+
sections = [
|
| 85 |
+
"Executive Summary",
|
| 86 |
+
"Certificate Identification",
|
| 87 |
+
"Emission Reduction Details",
|
| 88 |
+
"Project Information",
|
| 89 |
+
"Verification and Certification",
|
| 90 |
+
"Issuance and Expiration Dates",
|
| 91 |
+
"Market Type",
|
| 92 |
+
"Transferability Information",
|
| 93 |
+
"Legal Framework",
|
| 94 |
+
"Accountability Measures",
|
| 95 |
+
"Contact Information"
|
| 96 |
+
]
|
| 97 |
+
|
| 98 |
+
for section in sections:
|
| 99 |
+
doc.add_heading(section, level=1)
|
| 100 |
+
content = self.generate_section_content(section, input_data)
|
| 101 |
+
doc.add_paragraph(content)
|
| 102 |
+
|
| 103 |
+
return doc
|
| 104 |
+
|
| 105 |
+
def generate_document(self, input_text):
|
| 106 |
+
doc = self.create_document(input_text)
|
| 107 |
+
|
| 108 |
+
# Save the document to a BytesIO object
|
| 109 |
+
doc_io = io.BytesIO()
|
| 110 |
+
doc.save(doc_io)
|
| 111 |
+
doc_io.seek(0)
|
| 112 |
+
|
| 113 |
+
return doc_io
|
| 114 |
+
|
| 115 |
+
# Streamlit app
|
| 116 |
+
def main():
|
| 117 |
+
st.title("Carbon Credit Document Generator")
|
| 118 |
+
|
| 119 |
+
# File uploader
|
| 120 |
+
uploaded_file = st.file_uploader("Choose a text file", type="txt")
|
| 121 |
+
|
| 122 |
+
if uploaded_file is not None:
|
| 123 |
+
# Read the file
|
| 124 |
+
input_text = uploaded_file.read().decode("utf-8")
|
| 125 |
+
st.text_area("Input Data", input_text, height=200)
|
| 126 |
+
|
| 127 |
+
if st.button("Generate Document"):
|
| 128 |
+
generator = CarbonCreditDocGenerator()
|
| 129 |
+
|
| 130 |
+
with st.spinner("Generating document..."):
|
| 131 |
+
doc_io = generator.generate_document(input_text)
|
| 132 |
+
|
| 133 |
+
st.success("Document generated successfully!")
|
| 134 |
+
|
| 135 |
+
# Provide download button
|
| 136 |
+
st.download_button(
|
| 137 |
+
label="Download Carbon Credit Document",
|
| 138 |
+
data=doc_io.getvalue(),
|
| 139 |
+
file_name="carbon_credit_document.docx",
|
| 140 |
+
mime="application/vnd.openxmlformats-officedocument.wordprocessingml.document"
|
| 141 |
+
)
|
| 142 |
+
|
| 143 |
+
if __name__ == "__main__":
|
| 144 |
+
main()
|