Adieee5's picture
Update app.py
16a5fbe verified
import os
os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0' # Disable oneDNN to avoid numerical differences warning
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' # Suppress TensorFlow logs except critical errors
import logging
logging.getLogger('tensorflow').setLevel(logging.ERROR) # Further suppress TensorFlow warnings
import altair as alt
import numpy as np
import pandas as pd
import streamlit as st
import cv2
import torch
from transformers import AutoImageProcessor, AutoModelForImageClassification
from collections import deque
import tensorflow as tf
from tensorflow.keras.models import load_model
import tempfile
import time
import urllib.request
import shutil
# Cached model loading functions
@st.cache_resource
def load_cnn_model():
try:
model = load_model('cnn_model.h5')
st.success("CNN model loaded successfully!")
return model
except Exception as e:
st.error(f"Error loading CNN model: {e}")
st.warning("Please make sure 'cnn_model.h5' is in the current directory.")
return None
@st.cache_resource
def load_vit_components():
image_processor = AutoImageProcessor.from_pretrained('Adieee5/deepfake-detection-f3net-cross', use_fast=True)
model = AutoModelForImageClassification.from_pretrained('Adieee5/deepfake-detection-f3net-cross')
return image_processor, model
@st.cache_resource
def load_face_net():
model_file = "deploy.prototxt"
weights_file = "res10_300x300_ssd_iter_140000.caffemodel"
if os.path.exists(model_file) and os.path.exists(weights_file):
return cv2.dnn.readNetFromCaffe(model_file, weights_file)
return None
@st.cache_resource
def load_haar_cascade():
cascade_path = cv2.data.haarcascades + 'haarcascade_frontalface_default.xml'
if os.path.exists(cascade_path):
return cv2.CascadeClassifier(cascade_path)
return None
class CNNDeepfakeDetector:
def __init__(self):
self.model = load_cnn_model()
class DeepfakeDetector:
def __init__(self):
st.info("Initializing Deepfake Detector... This may take a moment.")
# Load ViT components
with st.spinner("Loading deepfake detection model..."):
self.image_processor, self.model = load_vit_components()
# Load face detection models
with st.spinner("Loading face detection model..."):
self.face_net = load_face_net()
self.use_dnn = self.face_net is not None
if self.use_dnn:
st.success("Using DNN face detector (better for close-up faces)")
else:
self.face_cascade = load_haar_cascade()
if self.face_cascade:
st.warning("Using Haar cascade face detector as fallback")
else:
st.error(f"Cascade file not found")
# Initialize CNN detector
self.cnn_detector = CNNDeepfakeDetector()
# Face tracking/smoothing parameters
self.face_history = {}
self.face_history_max_size = 10
self.face_ttl = 5
self.next_face_id = 0
self.result_buffer_size = 5
self.processing_times = deque(maxlen=30)
st.success("Models loaded successfully!")
def detect_faces_haar(self, frame):
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
faces = self.face_cascade.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30))
return [(x, y, w, h, 0.8) for (x, y, w, h) in faces]
def detect_faces_dnn(self, frame):
height, width = frame.shape[:2]
blob = cv2.dnn.blobFromImage(cv2.resize(frame, (300, 300)), 1.0, (300, 300), (104.0, 177.0, 123.0))
self.face_net.setInput(blob)
detections = self.face_net.forward()
faces = []
for i in range(detections.shape[2]):
confidence = detections[0, 0, i, 2]
if confidence > 0.5:
box = detections[0, 0, i, 3:7] * np.array([width, height, width, height])
(x1, y1, x2, y2) = box.astype("int")
x1, y1 = max(0, x1), max(0, y1)
x2, y2 = min(width, x2), min(height, y2)
w, h = x2 - x1, y2 - y1
if w > 0 and h > 0:
faces.append((x1, y1, w, h, confidence))
return faces
def calculate_iou(self, box1, box2):
box1_x1, box1_y1, box1_w, box1_h = box1
box2_x1, box2_y1, box2_w, box2_h = box2
box1_x2, box1_y2 = box1_x1 + box1_w, box1_y1 + box1_h
box2_x2, box2_y2 = box2_x1 + box2_w, box2_y1 + box2_h
x_left = max(box1_x1, box2_x1)
y_top = max(box1_y1, box2_y1)
x_right = min(box1_x2, box2_x2)
y_bottom = min(box1_y2, box2_y2)
if x_right < x_left or y_bottom < y_top:
return 0.0
intersection_area = (x_right - x_left) * (y_bottom - y_top)
box1_area = box1_w * box1_h
box2_area = box2_w * box2_h
return intersection_area / float(box1_area + box2_area - intersection_area)
def track_faces(self, faces):
matched_faces = []
unmatched_detections = list(range(len(faces)))
if not self.face_history:
for face in faces:
face_id = self.next_face_id
self.next_face_id += 1
self.face_history[face_id] = {
'positions': deque([face[:4]], maxlen=self.face_history_max_size),
'ttl': self.face_ttl,
'label': None,
'confidence': 0.0,
'result_history': deque(maxlen=self.result_buffer_size)
}
matched_faces.append((face_id, face))
return matched_faces
for face_id in list(self.face_history.keys()):
last_pos = self.face_history[face_id]['positions'][-1]
best_match = -1
best_iou = 0.3
for i in unmatched_detections:
iou = self.calculate_iou(last_pos, faces[i][:4])
if iou > best_iou:
best_iou = iou
best_match = i
if best_match != -1:
matched_face = faces[best_match]
self.face_history[face_id]['positions'].append(matched_face[:4])
self.face_history[face_id]['ttl'] = self.face_ttl
matched_faces.append((face_id, matched_face))
unmatched_detections.remove(best_match)
else:
self.face_history[face_id]['ttl'] -= 1
if self.face_history[face_id]['ttl'] <= 0:
del self.face_history[face_id]
else:
predicted_face = (*last_pos, 0.5)
matched_faces.append((face_id, predicted_face))
for i in unmatched_detections:
face_id = self.next_face_id
self.next_face_id += 1
self.face_history[face_id] = {
'positions': deque([faces[i][:4]], maxlen=self.face_history_max_size),
'ttl': self.face_ttl,
'label': None,
'confidence': 0.0,
'result_history': deque(maxlen=self.result_buffer_size)
}
matched_faces.append((face_id, faces[i]))
return matched_faces
def smooth_face_position(self, face_id):
positions = self.face_history[face_id]['positions']
if len(positions) == 1:
return positions[0]
total_weight = 0
x, y, w, h = 0, 0, 0, 0
for i, pos in enumerate(positions):
weight = 2 ** i
total_weight += weight
x += pos[0] * weight
y += pos[1] * weight
w += pos[2] * weight
h += pos[3] * weight
return (int(x / total_weight), int(y / total_weight), int(w / total_weight), int(h / total_weight))
def update_face_classification(self, face_id, label, confidence):
self.face_history[face_id]['result_history'].append((label, confidence))
real_votes = 0
fake_votes = 0
total_confidence = 0.0
for result_label, result_conf in self.face_history[face_id]['result_history']:
if result_label == "Real":
real_votes += 1
total_confidence += result_conf
elif result_label == "Fake":
fake_votes += 1
total_confidence += result_conf
if real_votes >= fake_votes:
smoothed_label = "Real"
label_confidence = real_votes / len(self.face_history[face_id]['result_history'])
else:
smoothed_label = "Fake"
label_confidence = fake_votes / len(self.face_history[face_id]['result_history'])
avg_confidence = (total_confidence / len(self.face_history[face_id]['result_history'])) * label_confidence
self.face_history[face_id]['label'] = smoothed_label
self.face_history[face_id]['confidence'] = avg_confidence
return smoothed_label, avg_confidence
def process_video(self, video_path, stframe, status_text, progress_bar, detector_type="dnn", model_type="vit"):
use_dnn_current = detector_type == "dnn" and self.use_dnn
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
st.error(f"Error: Cannot open video source")
return
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = cap.get(cv2.CAP_PROP_FPS)
total_frames = 250 if video_path != 0 else 0
if video_path != 0:
status_text.text(f"Video Info: {frame_width}x{frame_height}, {fps:.1f} FPS, {total_frames} frames")
else:
status_text.text(f"Webcam: {frame_width}x{frame_height}")
self.face_history = {}
self.next_face_id = 0
self.processing_times = deque(maxlen=30)
frame_count = 0
process_every_n_frames = 2
face_stats = {"Real": 0, "Fake": 0, "Unknown": 0}
while True:
start_time = time.time()
ret, frame = cap.read()
if not ret:
status_text.text("End of video reached")
break
frame_count += 1
if frame_count == 250:
st.success("Video Processed Successfully!")
break
if video_path != 0:
progress = min(float(frame_count) / float(max(total_frames, 1)), 1.0)
progress_bar.progress(progress)
process_frame = (frame_count % process_every_n_frames == 0)
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
if process_frame:
faces = self.detect_faces_dnn(frame) if use_dnn_current else self.detect_faces_haar(frame)
tracked_faces = self.track_faces(faces)
face_images = []
face_ids = []
for face_id, (x, y, w, h, face_confidence) in tracked_faces:
if face_id in self.face_history and w > 20 and h > 20:
sx, sy, sw, sh = self.smooth_face_position(face_id)
face = frame_rgb[sy:sy+sh, sx:sx+sw]
if face.size > 0 and face.shape[0] >= 20 and face.shape[1] >= 20:
face_images.append(face)
face_ids.append(face_id)
if face_images:
if model_type == "vit":
inputs = self.image_processor(images=face_images, return_tensors="pt")
with torch.no_grad():
outputs = self.model(**inputs)
logits = outputs.logits
probs = torch.nn.functional.softmax(logits, dim=1)
preds = torch.argmax(logits, dim=1)
for i, pred in enumerate(preds):
label = 'Real' if pred.item() == 1 else 'Fake'
confidence = probs[i][pred].item()
self.update_face_classification(face_ids[i], label, confidence)
elif model_type == "cnn" and self.cnn_detector.model is not None:
img_arrays = [cv2.resize(face, (128, 128)) / 255.0 for face in face_images]
img_batch = np.array(img_arrays)
predictions = self.cnn_detector.model.predict(img_batch)
for i, prediction in enumerate(predictions):
confidence = float(prediction[0])
label = 'Real' if confidence < 0.5 else 'Fake'
if label == 'Fake':
confidence = confidence
else:
confidence = 1.0 - confidence
self.update_face_classification(face_ids[i], label, confidence)
for face_id in self.face_history:
if self.face_history[face_id]['ttl'] > 0:
sx, sy, sw, sh = self.smooth_face_position(face_id)
cv2.rectangle(frame, (sx, sy), (sx+sw, sy+sh), (0, 255, 255), 2)
label = self.face_history[face_id]['label'] or "Unknown"
confidence = self.face_history[face_id]['confidence']
result_text = f"{label}: {confidence:.2f}"
text_color = (0, 255, 0) if label == "Real" else (0, 0, 255)
cv2.rectangle(frame, (sx, sy+sh), (sx+len(result_text)*11, sy+sh+25), (0, 0, 0), -1)
cv2.putText(frame, result_text, (sx, sy+sh+20),
cv2.FONT_HERSHEY_SIMPLEX, 0.7, text_color, 2)
cv2.putText(frame, f"ID:{face_id}", (sx, sy-5),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 0), 1)
if label in face_stats:
face_stats[label] += 1
process_time = time.time() - start_time
self.processing_times.append(process_time)
avg_time = sum(self.processing_times) / len(self.processing_times)
effective_fps = 1.0 / avg_time if avg_time > 0 else 0
if video_path != 0:
progress_percent = (frame_count / total_frames) * 100 if total_frames > 0 else 0
cv2.putText(frame, f"Frame: {frame_count}/{total_frames} ({progress_percent:.1f}%)",
(10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 255, 255), 2)
else:
cv2.putText(frame, f"Frame: {frame_count}",
(10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 255, 255), 2)
detector_name = "DNN" if use_dnn_current else "Haar Cascade"
model_name = "ViT" if model_type == "vit" else "CNN"
cv2.putText(frame, f"Detector: {detector_name} | Model: {model_name} | FPS: {effective_fps:.1f}",
(10, 60), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 2)
cv2.putText(frame, f"Tracked faces: {len(self.face_history)}",
(10, 90), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 2)
stframe.image(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB), channels="RGB")
status_text.text(f"Real: {face_stats['Real']} | Fake: {face_stats['Fake']} | FPS: {effective_fps:.1f}")
if st.session_state.get('stop_button', False):
break
cap.release()
return face_stats
def ensure_sample_video():
sample_dir = "sample_videos"
sample_path = os.path.join(sample_dir, "Sample.mp4")
if not os.path.exists(sample_dir):
os.makedirs(sample_dir)
if not os.path.exists(sample_path):
try:
with st.spinner("Downloading sample video..."):
sample_url = "https://storage.googleapis.com/deepfake-demo/sample_deepfake.mp4"
with urllib.request.urlopen(sample_url) as response, open(sample_path, 'wb') as out_file:
shutil.copyfileobj(response, out_file)
st.success("Sample video downloaded successfully!")
except Exception as e:
st.error(f"Failed to download sample video: {e}")
return None
return sample_path
def main():
st.set_page_config(page_title="Deepfake Detector", layout="wide")
st.title("Deepfake Detection App")
st.markdown("""
This app uses computer vision and deep learning to detect deepfake videos.
Upload a video or use your webcam to detect if faces are real or manipulated.
""")
if 'detector' not in st.session_state:
st.session_state.detector = None
if 'stop_button' not in st.session_state:
st.session_state.stop_button = False
if 'use_sample' not in st.session_state:
st.session_state.use_sample = False
if 'sample_path' not in st.session_state:
st.session_state.sample_path = None
if st.session_state.detector is None:
st.session_state.detector = DeepfakeDetector()
st.sidebar.title("Options")
input_option = st.sidebar.radio("Select Input Source", ["Upload Video", "Use Webcam", "Try Sample Video"])
detector_type = st.sidebar.selectbox("Face Detector", ["DNN (better for close-ups)", "Haar Cascade (faster)"],
index=0 if st.session_state.detector.use_dnn else 1)
detector_option = "dnn" if "DNN" in detector_type else "haar"
model_type = st.sidebar.selectbox("Deepfake Detection Model", ["Vision Transformer (ViT)", "F3 Net Model"], index=0)
model_option = "vit" if "Vision" in model_type else "cnn"
col1, col2 = st.columns([3, 1])
with col1:
video_placeholder = st.empty()
with col2:
status_text = st.empty()
progress_bar = st.empty()
st.subheader("Results")
results_area = st.empty()
if st.button("Stop Processing"):
st.session_state.stop_button = True
if input_option == "Upload Video":
uploaded_file = st.sidebar.file_uploader("Choose a video file", type=["mp4", "avi", "mov", "mkv"])
if uploaded_file is not None:
st.session_state.stop_button = False
tfile = tempfile.NamedTemporaryFile(delete=False)
tfile.write(uploaded_file.read())
video_path = tfile.name
face_stats = st.session_state.detector.process_video(video_path, video_placeholder, status_text,
progress_bar, detector_option, model_option)
results_df = {"Category": ["Real Faces", "Fake Faces"], "Count": [face_stats["Real"], face_stats["Fake"]]}
results_area.dataframe(results_df)
os.unlink(video_path)
elif input_option == "Use Webcam":
st.session_state.stop_button = False
if st.sidebar.button("Start Webcam"):
face_stats = st.session_state.detector.process_video(0, video_placeholder, status_text, progress_bar,
detector_option, model_option)
results_df = {"Category": ["Real Faces", "Fake Faces"], "Count": [face_stats["Real"], face_stats["Fake"]]}
results_area.dataframe(results_df)
elif input_option == "Try Sample Video":
st.session_state.stop_button = False
sample_path = ensure_sample_video()
if sample_path and st.sidebar.button("Process Sample Video"):
face_stats = st.session_state.detector.process_video(sample_path, video_placeholder, status_text,
progress_bar, detector_option, model_option)
results_df = {"Category": ["Real Faces", "Fake Faces"], "Count": [face_stats["Real"], face_stats["Fake"]]}
results_area.dataframe(results_df)
if __name__ == "__main__":
main()