AdiOO7 commited on
Commit
b46a9ef
·
1 Parent(s): 4596d9c

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -90
app.py DELETED
@@ -1,90 +0,0 @@
1
- from transformers import AutoModel
2
- import torch
3
- import transformers
4
- from transformers import AutoTokenizer, AutoModelForCausalLM
5
- from sklearn.metrics.pairwise import cosine_similarity
6
- from sentence_transformers import SentenceTransformer
7
-
8
- import gdown
9
- import json
10
- import textwrap
11
- import warnings
12
- import openai
13
- import pandas
14
- import gradio as gr
15
-
16
- warnings.filterwarnings("ignore")
17
-
18
- openai.api_key = "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"
19
-
20
-
21
- def generate_prompt(question):
22
- prompt = f"""
23
- ### <instruction>: Given an suitable answer for the question asked.
24
- ### <human>: {question}
25
- ### <assistant>:
26
- """.strip()
27
- return prompt
28
-
29
- file_id = '1CjJ-CQhZyr8QowwSksw5uo7O9OYgbq96'
30
-
31
- url = f'https://drive.google.com/uc?id={file_id}'
32
-
33
- output_file = 'data.xlsx'
34
-
35
- gdown.download(url, output_file, quiet=False)
36
-
37
- df = pd.read_csv(output_file, encoding='latin-1')
38
-
39
- df.head()
40
-
41
- sentences = []
42
- for row in df['QUESTION']:
43
- sentences.append(row)
44
-
45
-
46
- model_encode = SentenceTransformer('sentence-transformers/all-mpnet-base-v2')
47
- embeddings = model_encode.encode(sentences)
48
-
49
- answer = []
50
- for index, val in enumerate(df['ORIGINAL/SYNONYM']):
51
- if str(val) == "Original":
52
- answer.append(index)
53
-
54
- def answer_prompt(text):
55
-
56
- ind, sim = 0, 0
57
- bot_response = ''
58
- text_embedding = model_encode.encode(text)
59
- for index, val in enumerate(embeddings):
60
- res = cosine_similarity(text_embedding.reshape(1,-1),embeddings[index].reshape(1,-1))
61
- if res[0][0] > sim:
62
- sim = res[0][0]
63
- ind = index
64
-
65
- for i in range(len(answer)):
66
- if answer[i] > ind:
67
- bot_response = bot_response = f'Similarity Score is {round(sim * 100)} %' + '\n\n' + f'The issue is raised for {df["TECHNOLOGY"][answer[i - 1]]}' + '\n\n' + df['SOLUTION'][answer[i - 1]]
68
- break
69
-
70
- if sim > 0.5:
71
- return bot_response
72
-
73
- else:
74
-
75
- prompt = generate_prompt(text)
76
- response = openai.Completion.create(
77
- engine="gpt-3.5-turbo-instruct",
78
- prompt = prompt,
79
- max_tokens = 1024,
80
- top_p = 0.7,
81
- temperature = 0.3,
82
- presence_penalty = 0.7,
83
- )
84
-
85
- return 'This response is generated by our LLM' + '\n' + response['choices'][0]['text']
86
-
87
- iface = gr.Interface(fn=answer_prompt, inputs="text",
88
- outputs="text")
89
-
90
- iface.launch(inline=False)