Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import io
|
3 |
+
import numpy as np
|
4 |
+
import gradio as gr
|
5 |
+
import requests
|
6 |
+
from gtts import gTTS
|
7 |
+
from transformers import AutoProcessor, AutoModelForSpeechSeq2Seq
|
8 |
+
from pydub import AudioSegment
|
9 |
+
from groq import Groq
|
10 |
+
|
11 |
+
RAPIDAPI_KEY = userdata.get('RAPIDAPI_LANG_TRANS')
|
12 |
+
GROQ_API_KEY = userdata.get('GROQ_API_KEY')
|
13 |
+
|
14 |
+
# Initialize the Groq client
|
15 |
+
client = Groq(api_key=GROQ_API_KEY)
|
16 |
+
|
17 |
+
# Load the Whisper model
|
18 |
+
processor = AutoProcessor.from_pretrained("ihanif/whisper-medium-urdu")
|
19 |
+
model = AutoModelForSpeechSeq2Seq.from_pretrained("ihanif/whisper-medium-urdu")
|
20 |
+
|
21 |
+
# Function to translate text using Microsoft Translator
|
22 |
+
def translate(target, text):
|
23 |
+
url = "https://microsoft-translator-text.p.rapidapi.com/translate"
|
24 |
+
querystring = {"api-version":"3.0","profanityAction":"NoAction","textType":"plain", "to":target}
|
25 |
+
payload = [{"Text": text}]
|
26 |
+
headers = {
|
27 |
+
"x-rapidapi-key": RAPIDAPI_KEY,
|
28 |
+
"x-rapidapi-host": "microsoft-translator-text.p.rapidapi.com",
|
29 |
+
"Content-Type": "application/json"
|
30 |
+
}
|
31 |
+
response = requests.post(url, json=payload, headers=headers, params=querystring)
|
32 |
+
res = response.json()
|
33 |
+
return res[0]["translations"][0]["text"]
|
34 |
+
|
35 |
+
# Function to process audio and generate a response
|
36 |
+
def process_audio(file_path):
|
37 |
+
try:
|
38 |
+
# Load and preprocess the audio file
|
39 |
+
if file_path.endswith(".m4a"):
|
40 |
+
audio = AudioSegment.from_file(file_path, format="m4a")
|
41 |
+
else:
|
42 |
+
audio = AudioSegment.from_file(file_path)
|
43 |
+
|
44 |
+
audio = audio.set_frame_rate(16000) # Whisper requires a 16kHz sample rate
|
45 |
+
audio = audio.set_channels(1) # Whisper expects mono audio
|
46 |
+
|
47 |
+
# Convert audio to numpy array for processing
|
48 |
+
audio_samples = np.array(audio.get_array_of_samples(), dtype=np.float32) / 32768.0 # Normalize to [-1, 1] range
|
49 |
+
audio_input = processor(audio_samples, return_tensors="pt", sampling_rate=16000)
|
50 |
+
|
51 |
+
# Transcribe the audio using the fine-tuned Whisper model
|
52 |
+
result = model.generate(**audio_input)
|
53 |
+
text = processor.batch_decode(result, skip_special_tokens=True)[0]
|
54 |
+
|
55 |
+
if not text.strip(): # Check if the transcribed text is empty
|
56 |
+
return "No speech detected in the audio file.", None
|
57 |
+
|
58 |
+
print(f"Transcribed Text (Urdu): {text}") # Debugging step
|
59 |
+
|
60 |
+
# Translate the transcribed Urdu text to English
|
61 |
+
urdu_to_eng = translate("en", text)
|
62 |
+
print(f"Translated Text (English): {urdu_to_eng}") # Debugging step
|
63 |
+
|
64 |
+
# Generate a response using Groq
|
65 |
+
chat_completion = client.chat.completions.create(
|
66 |
+
messages=[{"role": "user", "content": urdu_to_eng}],
|
67 |
+
model="llama3-8b-8192", # Ensure the model supports Urdu if possible
|
68 |
+
max_tokens=50
|
69 |
+
)
|
70 |
+
|
71 |
+
# Access the response using dot notation
|
72 |
+
response_message = chat_completion.choices[0].message.content.strip()
|
73 |
+
print(f"Groq Response (English): {response_message}") # Debugging step
|
74 |
+
|
75 |
+
# Translate the response text back to Urdu
|
76 |
+
eng_to_urdu = translate("ur", response_message)
|
77 |
+
print(f"Translated Response (Urdu): {eng_to_urdu}") # Debugging step
|
78 |
+
|
79 |
+
# Convert the response text to Urdu speech
|
80 |
+
tts = gTTS(text=eng_to_urdu, lang="ur")
|
81 |
+
response_audio_io = io.BytesIO()
|
82 |
+
tts.write_to_fp(response_audio_io) # Save the audio to the BytesIO object
|
83 |
+
response_audio_io.seek(0)
|
84 |
+
|
85 |
+
# Save audio to a file to ensure it's generated correctly
|
86 |
+
with open("response.mp3", "wb") as audio_file:
|
87 |
+
audio_file.write(response_audio_io.getvalue())
|
88 |
+
|
89 |
+
# Return the response text and the path to the saved audio file
|
90 |
+
return eng_to_urdu, "response.mp3"
|
91 |
+
|
92 |
+
except Exception as e:
|
93 |
+
return f"An error occurred: {e}", None
|
94 |
+
|
95 |
+
# Gradio interface to handle the audio input and output
|
96 |
+
iface = gr.Interface(
|
97 |
+
fn=process_audio,
|
98 |
+
inputs=gr.Audio(type="filepath"), # Use type="filepath"
|
99 |
+
outputs=[gr.Textbox(label="Response Text"), gr.Audio(label="Response Audio")],
|
100 |
+
live=True
|
101 |
+
)
|
102 |
+
|
103 |
+
iface.launch()
|