Spaces:
Sleeping
Sleeping
from sklearn.model_selection import train_test_split | |
from sklearn.linear_model import LinearRegression | |
from sklearn.metrics import mean_squared_error, r2_score | |
from sklearn.ensemble import RandomForestRegressor | |
import pandas as pd | |
from tqdm.auto import tqdm | |
import streamlit as st | |
tqdm.pandas() | |
def predict_popularity(features): | |
predictions = [None] * 2 | |
predictions[0], predictions[1] = rf_model.predict([features]), model.predict([features]) | |
return predictions | |
data = pd.read_csv('top50.csv', encoding='ISO-8859-1') | |
print(data.head()) | |
# Let's also describe the data to get a sense of the distributions | |
print(data.describe()) | |
# Selecting the features and the target variable | |
X = data.drop(['Unnamed: 0', 'Track.Name', 'Artist.Name', 'Genre', 'Popularity'], axis=1) | |
y = data['Popularity'] | |
# Splitting the data into training and testing sets | |
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) | |
# Initializing the Linear Regression model | |
model = LinearRegression() | |
# Fitting the model | |
model.fit(X_train, y_train) | |
# Making predictions | |
y_pred = model.predict(X_test) | |
# Calculating the performance metrics | |
mse = mean_squared_error(y_test, y_pred) | |
r2 = r2_score(y_test, y_pred) | |
# Initialize the Random Forest Regressor | |
rf_model = RandomForestRegressor(n_estimators=100, random_state=42) | |
# Fitting the model | |
rf_model.fit(X_train, y_train) | |
# Making predictions | |
rf_pred = rf_model.predict(X_test) | |
# Calculating the performance metrics | |
rf_mse = mean_squared_error(y_test, rf_pred) | |
rf_r2 = r2_score(y_test, rf_pred) | |
# Feature importances | |
feature_importances = rf_model.feature_importances_ | |
# Create a pandas series with feature importances | |
importances = pd.Series(feature_importances, index=X.columns) | |
# Sort the feature importances in descending order | |
sorted_importances = importances.sort_values(ascending=False) | |