MC-E
first push
c05d22e
raw
history blame
10.5 kB
from enum import Enum, unique
import cv2
import torch
from basicsr.utils import img2tensor
from ldm.util import resize_numpy_image
from PIL import Image
from torch import autocast
@unique
class ExtraCondition(Enum):
sketch = 0
keypose = 1
seg = 2
depth = 3
canny = 4
style = 5
color = 6
openpose = 7
def get_cond_model(opt, cond_type: ExtraCondition):
if cond_type == ExtraCondition.sketch:
from ldm.modules.extra_condition.model_edge import pidinet
model = pidinet()
ckp = torch.load('models/table5_pidinet.pth', map_location='cpu')['state_dict']
model.load_state_dict({k.replace('module.', ''): v for k, v in ckp.items()}, strict=True)
model.to(opt.device)
return model
elif cond_type == ExtraCondition.seg:
raise NotImplementedError
elif cond_type == ExtraCondition.keypose:
import mmcv
from mmdet.apis import init_detector
from mmpose.apis import init_pose_model
det_config = 'configs/mm/faster_rcnn_r50_fpn_coco.py'
det_checkpoint = 'models/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth'
pose_config = 'configs/mm/hrnet_w48_coco_256x192.py'
pose_checkpoint = 'models/hrnet_w48_coco_256x192-b9e0b3ab_20200708.pth'
det_config_mmcv = mmcv.Config.fromfile(det_config)
det_model = init_detector(det_config_mmcv, det_checkpoint, device=opt.device)
pose_config_mmcv = mmcv.Config.fromfile(pose_config)
pose_model = init_pose_model(pose_config_mmcv, pose_checkpoint, device=opt.device)
return {'pose_model': pose_model, 'det_model': det_model}
elif cond_type == ExtraCondition.depth:
from ldm.modules.extra_condition.midas.api import MiDaSInference
model = MiDaSInference(model_type='dpt_hybrid').to(opt.device)
return model
elif cond_type == ExtraCondition.canny:
return None
elif cond_type == ExtraCondition.style:
from transformers import CLIPProcessor, CLIPVisionModel
version = 'openai/clip-vit-large-patch14'
processor = CLIPProcessor.from_pretrained(version)
clip_vision_model = CLIPVisionModel.from_pretrained(version).to(opt.device)
return {'processor': processor, 'clip_vision_model': clip_vision_model}
elif cond_type == ExtraCondition.color:
return None
elif cond_type == ExtraCondition.openpose:
from ldm.modules.extra_condition.openpose.api import OpenposeInference
model = OpenposeInference().to(opt.device)
return model
else:
raise NotImplementedError
def get_cond_sketch(opt, cond_image, cond_inp_type, cond_model=None):
if isinstance(cond_image, str):
edge = cv2.imread(cond_image)
else:
# for gradio input, pay attention, it's rgb numpy
edge = cv2.cvtColor(cond_image, cv2.COLOR_RGB2BGR)
edge = resize_numpy_image(edge, max_resolution=opt.max_resolution, resize_short_edge=opt.resize_short_edge)
opt.H, opt.W = edge.shape[:2]
if cond_inp_type == 'sketch':
edge = img2tensor(edge)[0].unsqueeze(0).unsqueeze(0) / 255.
edge = edge.to(opt.device)
elif cond_inp_type == 'image':
edge = img2tensor(edge).unsqueeze(0) / 255.
edge = cond_model(edge.to(opt.device))[-1]
else:
raise NotImplementedError
# edge = 1-edge # for white background
edge = edge > 0.5
edge = edge.float()
return edge
def get_cond_seg(opt, cond_image, cond_inp_type='image', cond_model=None):
if isinstance(cond_image, str):
seg = cv2.imread(cond_image)
else:
seg = cv2.cvtColor(cond_image, cv2.COLOR_RGB2BGR)
seg = resize_numpy_image(seg, max_resolution=opt.max_resolution, resize_short_edge=opt.resize_short_edge)
opt.H, opt.W = seg.shape[:2]
if cond_inp_type == 'seg':
seg = img2tensor(seg).unsqueeze(0) / 255.
seg = seg.to(opt.device)
else:
raise NotImplementedError
return seg
def get_cond_keypose(opt, cond_image, cond_inp_type='image', cond_model=None):
if isinstance(cond_image, str):
pose = cv2.imread(cond_image)
else:
pose = cv2.cvtColor(cond_image, cv2.COLOR_RGB2BGR)
pose = resize_numpy_image(pose, max_resolution=opt.max_resolution, resize_short_edge=opt.resize_short_edge)
opt.H, opt.W = pose.shape[:2]
if cond_inp_type == 'keypose':
pose = img2tensor(pose).unsqueeze(0) / 255.
pose = pose.to(opt.device)
elif cond_inp_type == 'image':
from ldm.modules.extra_condition.utils import imshow_keypoints
from mmdet.apis import inference_detector
from mmpose.apis import (inference_top_down_pose_model, process_mmdet_results)
# mmpose seems not compatible with autocast fp16
with autocast("cuda", dtype=torch.float32):
mmdet_results = inference_detector(cond_model['det_model'], pose)
# keep the person class bounding boxes.
person_results = process_mmdet_results(mmdet_results, 1)
# optional
return_heatmap = False
dataset = cond_model['pose_model'].cfg.data['test']['type']
# e.g. use ('backbone', ) to return backbone feature
output_layer_names = None
pose_results, returned_outputs = inference_top_down_pose_model(
cond_model['pose_model'],
pose,
person_results,
bbox_thr=0.2,
format='xyxy',
dataset=dataset,
dataset_info=None,
return_heatmap=return_heatmap,
outputs=output_layer_names)
# show the results
pose = imshow_keypoints(pose, pose_results, radius=2, thickness=2)
pose = img2tensor(pose).unsqueeze(0) / 255.
pose = pose.to(opt.device)
else:
raise NotImplementedError
return pose
def get_cond_depth(opt, cond_image, cond_inp_type='image', cond_model=None):
if isinstance(cond_image, str):
depth = cv2.imread(cond_image)
else:
depth = cv2.cvtColor(cond_image, cv2.COLOR_RGB2BGR)
depth = resize_numpy_image(depth, max_resolution=opt.max_resolution, resize_short_edge=opt.resize_short_edge)
opt.H, opt.W = depth.shape[:2]
if cond_inp_type == 'depth':
depth = img2tensor(depth).unsqueeze(0) / 255.
depth = depth.to(opt.device)
elif cond_inp_type == 'image':
depth = img2tensor(depth).unsqueeze(0) / 127.5 - 1.0
depth = cond_model(depth.to(opt.device)).repeat(1, 3, 1, 1)
depth -= torch.min(depth)
depth /= torch.max(depth)
else:
raise NotImplementedError
return depth
def get_cond_canny(opt, cond_image, cond_inp_type='image', cond_model=None):
if isinstance(cond_image, str):
canny = cv2.imread(cond_image)
else:
canny = cv2.cvtColor(cond_image, cv2.COLOR_RGB2BGR)
canny = resize_numpy_image(canny, max_resolution=opt.max_resolution, resize_short_edge=opt.resize_short_edge)
opt.H, opt.W = canny.shape[:2]
if cond_inp_type == 'canny':
canny = img2tensor(canny)[0:1].unsqueeze(0) / 255.
canny = canny.to(opt.device)
elif cond_inp_type == 'image':
canny = cv2.Canny(canny, 100, 200)[..., None]
canny = img2tensor(canny).unsqueeze(0) / 255.
canny = canny.to(opt.device)
else:
raise NotImplementedError
return canny
def get_cond_style(opt, cond_image, cond_inp_type='image', cond_model=None):
assert cond_inp_type == 'image'
if isinstance(cond_image, str):
style = Image.open(cond_image)
else:
# numpy image to PIL image
style = Image.fromarray(cond_image)
style_for_clip = cond_model['processor'](images=style, return_tensors="pt")['pixel_values']
style_feat = cond_model['clip_vision_model'](style_for_clip.to(opt.device))['last_hidden_state']
return style_feat
def get_cond_color(opt, cond_image, cond_inp_type='image', cond_model=None):
if isinstance(cond_image, str):
color = cv2.imread(cond_image)
else:
color = cv2.cvtColor(cond_image, cv2.COLOR_RGB2BGR)
color = resize_numpy_image(color, max_resolution=opt.max_resolution, resize_short_edge=opt.resize_short_edge)
opt.H, opt.W = color.shape[:2]
if cond_inp_type == 'image':
color = cv2.resize(color, (opt.W//64, opt.H//64), interpolation=cv2.INTER_CUBIC)
color = cv2.resize(color, (opt.W, opt.H), interpolation=cv2.INTER_NEAREST)
color = img2tensor(color).unsqueeze(0) / 255.
color = color.to(opt.device)
return color
def get_cond_openpose(opt, cond_image, cond_inp_type='image', cond_model=None):
if isinstance(cond_image, str):
openpose_keypose = cv2.imread(cond_image)
else:
openpose_keypose = cv2.cvtColor(cond_image, cv2.COLOR_RGB2BGR)
openpose_keypose = resize_numpy_image(
openpose_keypose, max_resolution=opt.max_resolution, resize_short_edge=opt.resize_short_edge)
opt.H, opt.W = openpose_keypose.shape[:2]
if cond_inp_type == 'openpose':
openpose_keypose = img2tensor(openpose_keypose).unsqueeze(0) / 255.
openpose_keypose = openpose_keypose.to(opt.device)
elif cond_inp_type == 'image':
with autocast('cuda', dtype=torch.float32):
openpose_keypose = cond_model(openpose_keypose)
openpose_keypose = img2tensor(openpose_keypose).unsqueeze(0) / 255.
openpose_keypose = openpose_keypose.to(opt.device)
else:
raise NotImplementedError
return openpose_keypose
def get_adapter_feature(inputs, adapters):
ret_feat_map = None
ret_feat_seq = None
if not isinstance(inputs, list):
inputs = [inputs]
adapters = [adapters]
for input, adapter in zip(inputs, adapters):
cur_feature = adapter['model'](input)
if isinstance(cur_feature, list):
if ret_feat_map is None:
ret_feat_map = list(map(lambda x: x * adapter['cond_weight'], cur_feature))
else:
ret_feat_map = list(map(lambda x, y: x + y * adapter['cond_weight'], ret_feat_map, cur_feature))
else:
if ret_feat_seq is None:
ret_feat_seq = cur_feature * adapter['cond_weight']
else:
ret_feat_seq = torch.cat([ret_feat_seq, cur_feature * adapter['cond_weight']], dim=1)
return ret_feat_map, ret_feat_seq