CoAdapter / t2i_adapters /t2i_adapters_for_canny.py
MC-E
first push
c05d22e
import torch
from ldm.models.diffusion.ddpm import LatentDiffusion
from ldm.util import instantiate_from_config
class T2IAdapterCannyBase(LatentDiffusion):
def __init__(self, adapter_config, extra_cond_key, noise_schedule, *args, **kwargs):
super(T2IAdapterCannyBase, self).__init__(*args, **kwargs)
self.adapter = instantiate_from_config(adapter_config)
self.extra_cond_key = extra_cond_key
self.noise_schedule = noise_schedule
def shared_step(self, batch, **kwargs):
for k in self.ucg_training:
p = self.ucg_training[k]
for i in range(len(batch[k])):
if self.ucg_prng.choice(2, p=[1 - p, p]):
if isinstance(batch[k], list):
batch[k][i] = ""
else:
raise NotImplementedError("only text ucg is currently supported")
batch['jpg'] = batch['jpg'] * 2 - 1
x, c = self.get_input(batch, self.first_stage_key)
extra_cond = super(LatentDiffusion, self).get_input(batch, self.extra_cond_key).to(self.device)
features_adapter = self.adapter(extra_cond)
t = self.get_time_with_schedule(self.noise_schedule, x.size(0))
loss, loss_dict = self(x, c, t=t, features_adapter=features_adapter)
return loss, loss_dict
def configure_optimizers(self):
lr = self.learning_rate
params = list(self.adapter.parameters())
opt = torch.optim.AdamW(params, lr=lr)
return opt
def on_save_checkpoint(self, checkpoint):
keys = list(checkpoint['state_dict'].keys())
for key in keys:
if 'adapter' not in key:
del checkpoint['state_dict'][key]
def on_load_checkpoint(self, checkpoint):
for name in self.state_dict():
if 'adapter' not in name:
checkpoint['state_dict'][name] = self.state_dict()[name]