Spaces:
Runtime error
Runtime error
import torch | |
from ldm.models.diffusion.ddpm import LatentDiffusion | |
from ldm.util import instantiate_from_config | |
class T2IAdapterCannyBase(LatentDiffusion): | |
def __init__(self, adapter_config, extra_cond_key, noise_schedule, *args, **kwargs): | |
super(T2IAdapterCannyBase, self).__init__(*args, **kwargs) | |
self.adapter = instantiate_from_config(adapter_config) | |
self.extra_cond_key = extra_cond_key | |
self.noise_schedule = noise_schedule | |
def shared_step(self, batch, **kwargs): | |
for k in self.ucg_training: | |
p = self.ucg_training[k] | |
for i in range(len(batch[k])): | |
if self.ucg_prng.choice(2, p=[1 - p, p]): | |
if isinstance(batch[k], list): | |
batch[k][i] = "" | |
else: | |
raise NotImplementedError("only text ucg is currently supported") | |
batch['jpg'] = batch['jpg'] * 2 - 1 | |
x, c = self.get_input(batch, self.first_stage_key) | |
extra_cond = super(LatentDiffusion, self).get_input(batch, self.extra_cond_key).to(self.device) | |
features_adapter = self.adapter(extra_cond) | |
t = self.get_time_with_schedule(self.noise_schedule, x.size(0)) | |
loss, loss_dict = self(x, c, t=t, features_adapter=features_adapter) | |
return loss, loss_dict | |
def configure_optimizers(self): | |
lr = self.learning_rate | |
params = list(self.adapter.parameters()) | |
opt = torch.optim.AdamW(params, lr=lr) | |
return opt | |
def on_save_checkpoint(self, checkpoint): | |
keys = list(checkpoint['state_dict'].keys()) | |
for key in keys: | |
if 'adapter' not in key: | |
del checkpoint['state_dict'][key] | |
def on_load_checkpoint(self, checkpoint): | |
for name in self.state_dict(): | |
if 'adapter' not in name: | |
checkpoint['state_dict'][name] = self.state_dict()[name] | |