Spaces:
Running
Running
pratham0011
commited on
Commit
•
245387f
1
Parent(s):
68f8169
Upload app__.py
Browse files
app__.py
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from llama_index.core.prompts import PromptTemplate
|
3 |
+
from transformers import AutoTokenizer
|
4 |
+
from llama_index.core import Settings
|
5 |
+
import os
|
6 |
+
import time
|
7 |
+
from llama_index.llms.text_generation_inference import TextGenerationInference
|
8 |
+
import whisper
|
9 |
+
import gradio as gr
|
10 |
+
from gtts import gTTS
|
11 |
+
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
|
12 |
+
import soundfile as sf
|
13 |
+
from datasets import load_dataset
|
14 |
+
model = whisper.load_model("base")
|
15 |
+
HF_API_TOKEN = os.getenv("HF_TOKEN")
|
16 |
+
|
17 |
+
def translate_audio(audio):
|
18 |
+
|
19 |
+
# load audio and pad/trim it to fit 30 seconds
|
20 |
+
audio = whisper.load_audio(audio)
|
21 |
+
audio = whisper.pad_or_trim(audio)
|
22 |
+
|
23 |
+
# make log-Mel spectrogram and move to the same device as the model
|
24 |
+
mel = whisper.log_mel_spectrogram(audio).to(model.device)
|
25 |
+
|
26 |
+
# decode the audio
|
27 |
+
options = whisper.DecodingOptions(language='en', task="transcribe", temperature=0)
|
28 |
+
result = whisper.decode(model, mel, options)
|
29 |
+
return result.text
|
30 |
+
|
31 |
+
def audio_response(text, output_path="speech.wav"):
|
32 |
+
# Load the processor, model, and vocoder
|
33 |
+
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
|
34 |
+
model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts")
|
35 |
+
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
|
36 |
+
|
37 |
+
# Process the input text
|
38 |
+
inputs = processor(text=text, return_tensors="pt")
|
39 |
+
|
40 |
+
# Load xvector containing speaker's voice characteristics
|
41 |
+
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
42 |
+
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
43 |
+
|
44 |
+
# Generate speech
|
45 |
+
with torch.no_grad():
|
46 |
+
speech = model.generate_speech(inputs["input_ids"], speaker_embeddings, vocoder=vocoder)
|
47 |
+
|
48 |
+
# Save the audio to a file
|
49 |
+
sf.write(output_path, speech.numpy(), samplerate=16000) # Ensure the sample rate matches your needs
|
50 |
+
|
51 |
+
return output_path
|
52 |
+
|
53 |
+
def messages_to_prompt(messages):
|
54 |
+
# Default system message for a chatbot
|
55 |
+
default_system_prompt = "You are an AI chatbot designed to assist with user queries in a friendly and conversational manner."
|
56 |
+
|
57 |
+
prompt = default_system_prompt + "\n"
|
58 |
+
|
59 |
+
for message in messages:
|
60 |
+
if message.role == 'system':
|
61 |
+
prompt += f"\n{message.content}</s>\n"
|
62 |
+
elif message.role == 'user':
|
63 |
+
prompt += f"\n{message.content}</s>\n"
|
64 |
+
elif message.role == 'assistant':
|
65 |
+
prompt += f"\n{message.content}</s>\n"
|
66 |
+
|
67 |
+
# Ensure we start with a system prompt, insert blank if needed
|
68 |
+
if not prompt.startswith("\n"):
|
69 |
+
prompt = "\n</s>\n" + prompt
|
70 |
+
|
71 |
+
# Add final assistant prompt
|
72 |
+
prompt = prompt + "\n"
|
73 |
+
|
74 |
+
return prompt
|
75 |
+
|
76 |
+
def completion_to_prompt(completion):
|
77 |
+
return f"<|system|>\n</s>\n<|user|>\n{completion}</s>\n<|assistant|>\n"
|
78 |
+
|
79 |
+
Settings.llm = TextGenerationInference(
|
80 |
+
model_url="https://api-inference.huggingface.co/models/meta-llama/Meta-Llama-3-8B-Instruct",
|
81 |
+
token=HF_API_TOKEN,
|
82 |
+
messages_to_prompt=messages_to_prompt,
|
83 |
+
completion_to_prompt=completion_to_prompt
|
84 |
+
)
|
85 |
+
def text_response(t):
|
86 |
+
time.sleep(1) # Adjust the delay as needed
|
87 |
+
response = Settings.llm.complete(t)
|
88 |
+
message = response.text
|
89 |
+
return message
|
90 |
+
|
91 |
+
def transcribe_(a):
|
92 |
+
t1 = translate_audio(a)
|
93 |
+
t2 = text_response(t1)
|
94 |
+
t3 = audio_response(t2)
|
95 |
+
return (t1, t2, t3)
|
96 |
+
|
97 |
+
output_1 = gr.Textbox(label="Speech to Text")
|
98 |
+
output_2 = gr.Textbox(label="LLM Output")
|
99 |
+
output_3 = gr.Audio(label="LLM output to audio")
|
100 |
+
|
101 |
+
gr.Interface(
|
102 |
+
title='AI Voice Assistant',
|
103 |
+
fn=transcribe_,
|
104 |
+
inputs=[
|
105 |
+
gr.Audio(sources="microphone", type="filepath"),
|
106 |
+
],
|
107 |
+
outputs=[
|
108 |
+
output_1, output_2, output_3
|
109 |
+
]
|
110 |
+
).launch(share=True)
|
111 |
+
|