KingNish commited on
Commit
1f0d2e8
1 Parent(s): 9cc2151

Update voice_chat.py

Browse files
Files changed (1) hide show
  1. voice_chat.py +7 -28
voice_chat.py CHANGED
@@ -9,7 +9,6 @@ import torch
9
  import sentencepiece as spm
10
  import onnxruntime as ort
11
  from huggingface_hub import hf_hub_download, InferenceClient
12
- import os
13
 
14
  # Speech Recognition Model Configuration
15
  model_name = "neongeckocom/stt_en_citrinet_512_gamma_0_25"
@@ -20,28 +19,9 @@ preprocessor = torch.jit.load(hf_hub_download(model_name, "preprocessor.ts", sub
20
  encoder = ort.InferenceSession(hf_hub_download(model_name, "model.onnx", subfolder="onnx"))
21
  tokenizer = spm.SentencePieceProcessor(hf_hub_download(model_name, "tokenizer.spm", subfolder="onnx"))
22
 
23
- # Model Configuration
24
-
25
- # Get Hugging Face API token
26
- HF_TOKEN = os.environ.get("HF_TOKEN", None)
27
-
28
-
29
- # Define a function to get the appropriate InferenceClient based on model name
30
- def client_fn(model):
31
- if "Nous" in model:
32
- return InferenceClient("NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO")
33
- elif "Star" in model:
34
- return InferenceClient("HuggingFaceH4/starchat2-15b-v0.1")
35
- elif "Mistral" in model:
36
- return InferenceClient("mistralai/Mistral-7B-Instruct-v0.3")
37
- elif "Phi" in model:
38
- return InferenceClient("microsoft/Phi-3-mini-4k-instruct")
39
- elif "Zephyr" in model:
40
- return InferenceClient("HuggingFaceH4/zephyr-7b-beta")
41
- else:
42
- return InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
43
-
44
- system_instructions1 = "[SYSTEM] Answer as Real OpenGPT 4o, Made by 'KingNish', Keep conversation very short, clear, friendly and concise. The text provided is a request for a specific type of response from you, the virtual assistant. You will avoid introductions and start answering the query directly, elaborating on all aspects of the request. As an AI-powered assistant, your task is to generate responses that appear as if they are created by the user and not an AI-powered assistant. [USER]"
45
 
46
  def resample(audio_fp32, sr):
47
  return soxr.resample(audio_fp32, sr, sample_rate)
@@ -69,15 +49,14 @@ def transcribe(audio_path):
69
 
70
  return text
71
 
72
- def model(text, model="Mixtral 8x7B"):
73
- client1 = client_fn(model)
74
- formatted_prompt = system_instructions1 + text + "[OpenGPT 4o]"
75
  stream = client1.text_generation(formatted_prompt, max_new_tokens=512, stream=True, details=True, return_full_text=False)
76
  return "".join([response.token.text for response in stream if response.token.text != "</s>"])
77
 
78
- async def respond(audio, model):
79
  user = transcribe(audio)
80
- reply = model(user, model)
81
  communicate = edge_tts.Communicate(reply)
82
  with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
83
  tmp_path = tmp_file.name
 
9
  import sentencepiece as spm
10
  import onnxruntime as ort
11
  from huggingface_hub import hf_hub_download, InferenceClient
 
12
 
13
  # Speech Recognition Model Configuration
14
  model_name = "neongeckocom/stt_en_citrinet_512_gamma_0_25"
 
19
  encoder = ort.InferenceSession(hf_hub_download(model_name, "model.onnx", subfolder="onnx"))
20
  tokenizer = spm.SentencePieceProcessor(hf_hub_download(model_name, "tokenizer.spm", subfolder="onnx"))
21
 
22
+ # Mistral Model Configuration
23
+ client1 = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
24
+ system_instructions1 = "<s>[SYSTEM] Answer as Real Jarvis JARVIS, Made by 'Tony Stark', Keep conversation very short, clear, friendly and concise. The text provided is a request for a specific type of response from you, the virtual assistant. The request asks you to provide friendly responses as if You are the character Jarvis, made by 'Tony Stark.' The expectation is that I will avoid introductions and start answering the query directly, elaborating on all aspects of the request. As an AI-powered assistant, your task is to generate responses that appear as if they are created by the user and not an AI-powered assistant. [USER]"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25
 
26
  def resample(audio_fp32, sr):
27
  return soxr.resample(audio_fp32, sr, sample_rate)
 
49
 
50
  return text
51
 
52
+ def model(text):
53
+ formatted_prompt = system_instructions1 + text + "[JARVIS]"
 
54
  stream = client1.text_generation(formatted_prompt, max_new_tokens=512, stream=True, details=True, return_full_text=False)
55
  return "".join([response.token.text for response in stream if response.token.text != "</s>"])
56
 
57
+ async def respond(audio):
58
  user = transcribe(audio)
59
+ reply = model(user)
60
  communicate = edge_tts.Communicate(reply)
61
  with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
62
  tmp_path = tmp_file.name