AdamyaG's picture
Update app.py
14e4a36 verified
import streamlit as st
from PyPDF2 import PdfReader
from langchain.text_splitter import RecursiveCharacterTextSplitter
import os
from langchain.vectorstores import FAISS
from langchain.chains import ConversationalRetrievalChain
from langchain.memory import ConversationBufferMemory
# import google.generativeai as palm
# from langchain.embeddings import GooglePalmEmbeddings
# from langchain.llms import GooglePalm
# from langchain_google_genai import GoogleGenerativeAI
from langchain.embeddings import HuggingFaceInstructEmbeddings
# from langchain.llms import HuggingFaceHub
from langchain_huggingface import HuggingFaceEndpoint
os.getenv('HUGGINGFACEHUB_API_TOKEN')
# os.getenv('GOOGLE_API_KEY')
def get_pdf_text(pdf_docs):
text=""
for pdf in pdf_docs:
pdf_reader= PdfReader(pdf)
for page in pdf_reader.pages:
text+= page.extract_text()
return text
def get_text_chunks(text):
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=20)
chunks = text_splitter.split_text(text)
return chunks
def get_vector_store(text_chunks):
embeddings = HuggingFaceInstructEmbeddings(model_name="BAAI/bge-large-zh-v1.5")
# embeddings = GooglePalmEmbeddings()
vector_store = FAISS.from_texts(text_chunks, embedding=embeddings)
return vector_store
def get_conversational_chain(vector_store):
# llm = HuggingFaceHub(repo_id="HuggingFaceH4/zephyr-7b-beta", model_kwargs={"temperature":0.5, "max_length":512})
# llm = GoogleGenerativeAI(model="models/text-bison-001", temperature=0.5)
llm = HuggingFaceEndpoint(
repo_id="HuggingFaceH4/zephyr-7b-beta",
task="text-generation",
max_new_tokens=512)
memory = ConversationBufferMemory(memory_key = "chat_history", return_messages=True)
conversation_chain = ConversationalRetrievalChain.from_llm(llm=llm, retriever=vector_store.as_retriever(), memory=memory)
return conversation_chain
def user_input(user_question):
response = st.session_state.conversation({'question': user_question})
st.session_state.chatHistory = response['chat_history']
for i, message in enumerate(st.session_state.chatHistory):
if i%2 == 0:
st.write("Human: ", message.content)
else:
st.write("Bot: ", message.content)
def main():
st.set_page_config("Chat with Multiple PDFs")
st.header("Chat with Multiple PDF 💬")
user_question = st.text_input("Ask a Question from the PDF Files")
if "conversation" not in st.session_state:
st.session_state.conversation = None
if "chatHistory" not in st.session_state:
st.session_state.chatHistory = None
if user_question:
user_input(user_question)
with st.sidebar:
st.title("Settings")
st.subheader("Upload your Documents")
pdf_docs = st.file_uploader("Upload your PDF Files and Click on the Process Button", accept_multiple_files=True)
if st.button("Process"):
with st.spinner("Processing"):
raw_text = get_pdf_text(pdf_docs)
text_chunks = get_text_chunks(raw_text)
vector_store = get_vector_store(text_chunks)
st.session_state.conversation = get_conversational_chain(vector_store)
st.success("Done")
if __name__ == "__main__":
main()