|
import os |
|
import math |
|
import numpy as np |
|
from typing import NamedTuple |
|
from plyfile import PlyData, PlyElement |
|
|
|
import torch |
|
from torch import nn |
|
|
|
from diff_gaussian_rasterization import ( |
|
GaussianRasterizationSettings, |
|
GaussianRasterizer, |
|
) |
|
from simple_knn._C import distCUDA2 |
|
|
|
from sh_utils import eval_sh, SH2RGB, RGB2SH |
|
from mesh import Mesh |
|
from mesh_utils import decimate_mesh, clean_mesh |
|
|
|
import kiui |
|
|
|
def inverse_sigmoid(x): |
|
return torch.log(x/(1-x)) |
|
|
|
def get_expon_lr_func( |
|
lr_init, lr_final, lr_delay_steps=0, lr_delay_mult=1.0, max_steps=1000000 |
|
): |
|
|
|
def helper(step): |
|
if lr_init == lr_final: |
|
|
|
return lr_init |
|
if step < 0 or (lr_init == 0.0 and lr_final == 0.0): |
|
|
|
return 0.0 |
|
if lr_delay_steps > 0: |
|
|
|
delay_rate = lr_delay_mult + (1 - lr_delay_mult) * np.sin( |
|
0.5 * np.pi * np.clip(step / lr_delay_steps, 0, 1) |
|
) |
|
else: |
|
delay_rate = 1.0 |
|
t = np.clip(step / max_steps, 0, 1) |
|
log_lerp = np.exp(np.log(lr_init) * (1 - t) + np.log(lr_final) * t) |
|
return delay_rate * log_lerp |
|
|
|
return helper |
|
|
|
|
|
def strip_lowerdiag(L): |
|
uncertainty = torch.zeros((L.shape[0], 6), dtype=torch.float, device="cuda") |
|
|
|
uncertainty[:, 0] = L[:, 0, 0] |
|
uncertainty[:, 1] = L[:, 0, 1] |
|
uncertainty[:, 2] = L[:, 0, 2] |
|
uncertainty[:, 3] = L[:, 1, 1] |
|
uncertainty[:, 4] = L[:, 1, 2] |
|
uncertainty[:, 5] = L[:, 2, 2] |
|
return uncertainty |
|
|
|
def strip_symmetric(sym): |
|
return strip_lowerdiag(sym) |
|
|
|
def gaussian_3d_coeff(xyzs, covs): |
|
|
|
|
|
x, y, z = xyzs[:, 0], xyzs[:, 1], xyzs[:, 2] |
|
a, b, c, d, e, f = covs[:, 0], covs[:, 1], covs[:, 2], covs[:, 3], covs[:, 4], covs[:, 5] |
|
|
|
|
|
inv_det = 1 / (a * d * f + 2 * e * c * b - e**2 * a - c**2 * d - b**2 * f + 1e-24) |
|
inv_a = (d * f - e**2) * inv_det |
|
inv_b = (e * c - b * f) * inv_det |
|
inv_c = (e * b - c * d) * inv_det |
|
inv_d = (a * f - c**2) * inv_det |
|
inv_e = (b * c - e * a) * inv_det |
|
inv_f = (a * d - b**2) * inv_det |
|
|
|
power = -0.5 * (x**2 * inv_a + y**2 * inv_d + z**2 * inv_f) - x * y * inv_b - x * z * inv_c - y * z * inv_e |
|
|
|
power[power > 0] = -1e10 |
|
|
|
return torch.exp(power) |
|
|
|
def build_rotation(r): |
|
norm = torch.sqrt(r[:,0]*r[:,0] + r[:,1]*r[:,1] + r[:,2]*r[:,2] + r[:,3]*r[:,3]) |
|
|
|
q = r / norm[:, None] |
|
|
|
R = torch.zeros((q.size(0), 3, 3), device='cuda') |
|
|
|
r = q[:, 0] |
|
x = q[:, 1] |
|
y = q[:, 2] |
|
z = q[:, 3] |
|
|
|
R[:, 0, 0] = 1 - 2 * (y*y + z*z) |
|
R[:, 0, 1] = 2 * (x*y - r*z) |
|
R[:, 0, 2] = 2 * (x*z + r*y) |
|
R[:, 1, 0] = 2 * (x*y + r*z) |
|
R[:, 1, 1] = 1 - 2 * (x*x + z*z) |
|
R[:, 1, 2] = 2 * (y*z - r*x) |
|
R[:, 2, 0] = 2 * (x*z - r*y) |
|
R[:, 2, 1] = 2 * (y*z + r*x) |
|
R[:, 2, 2] = 1 - 2 * (x*x + y*y) |
|
return R |
|
|
|
def build_scaling_rotation(s, r): |
|
L = torch.zeros((s.shape[0], 3, 3), dtype=torch.float, device="cuda") |
|
R = build_rotation(r) |
|
|
|
L[:,0,0] = s[:,0] |
|
L[:,1,1] = s[:,1] |
|
L[:,2,2] = s[:,2] |
|
|
|
L = R @ L |
|
return L |
|
|
|
class BasicPointCloud(NamedTuple): |
|
points: np.array |
|
colors: np.array |
|
normals: np.array |
|
|
|
|
|
class GaussianModel: |
|
|
|
def setup_functions(self): |
|
def build_covariance_from_scaling_rotation(scaling, scaling_modifier, rotation): |
|
L = build_scaling_rotation(scaling_modifier * scaling, rotation) |
|
actual_covariance = L @ L.transpose(1, 2) |
|
symm = strip_symmetric(actual_covariance) |
|
return symm |
|
|
|
self.scaling_activation = torch.exp |
|
self.scaling_inverse_activation = torch.log |
|
|
|
self.covariance_activation = build_covariance_from_scaling_rotation |
|
|
|
self.opacity_activation = torch.sigmoid |
|
self.inverse_opacity_activation = inverse_sigmoid |
|
|
|
self.rotation_activation = torch.nn.functional.normalize |
|
|
|
|
|
def __init__(self, sh_degree : int): |
|
self.active_sh_degree = 0 |
|
self.max_sh_degree = sh_degree |
|
self._xyz = torch.empty(0) |
|
self._features_dc = torch.empty(0) |
|
self._features_rest = torch.empty(0) |
|
self._scaling = torch.empty(0) |
|
self._rotation = torch.empty(0) |
|
self._opacity = torch.empty(0) |
|
self.max_radii2D = torch.empty(0) |
|
self.xyz_gradient_accum = torch.empty(0) |
|
self.denom = torch.empty(0) |
|
self.optimizer = None |
|
self.percent_dense = 0 |
|
self.spatial_lr_scale = 0 |
|
self.setup_functions() |
|
|
|
def capture(self): |
|
return ( |
|
self.active_sh_degree, |
|
self._xyz, |
|
self._features_dc, |
|
self._features_rest, |
|
self._scaling, |
|
self._rotation, |
|
self._opacity, |
|
self.max_radii2D, |
|
self.xyz_gradient_accum, |
|
self.denom, |
|
self.optimizer.state_dict(), |
|
self.spatial_lr_scale, |
|
) |
|
|
|
def restore(self, model_args, training_args): |
|
(self.active_sh_degree, |
|
self._xyz, |
|
self._features_dc, |
|
self._features_rest, |
|
self._scaling, |
|
self._rotation, |
|
self._opacity, |
|
self.max_radii2D, |
|
xyz_gradient_accum, |
|
denom, |
|
opt_dict, |
|
self.spatial_lr_scale) = model_args |
|
self.training_setup(training_args) |
|
self.xyz_gradient_accum = xyz_gradient_accum |
|
self.denom = denom |
|
self.optimizer.load_state_dict(opt_dict) |
|
|
|
@property |
|
def get_scaling(self): |
|
return self.scaling_activation(self._scaling) |
|
|
|
@property |
|
def get_rotation(self): |
|
return self.rotation_activation(self._rotation) |
|
|
|
@property |
|
def get_xyz(self): |
|
return self._xyz |
|
|
|
@property |
|
def get_features(self): |
|
features_dc = self._features_dc |
|
features_rest = self._features_rest |
|
return torch.cat((features_dc, features_rest), dim=1) |
|
|
|
@property |
|
def get_opacity(self): |
|
return self.opacity_activation(self._opacity) |
|
|
|
@torch.no_grad() |
|
def extract_fields(self, resolution=128, num_blocks=16, relax_ratio=1.5): |
|
|
|
|
|
block_size = 2 / num_blocks |
|
|
|
assert resolution % block_size == 0 |
|
split_size = resolution // num_blocks |
|
|
|
opacities = self.get_opacity |
|
|
|
|
|
mask = (opacities > 0.005).squeeze(1) |
|
|
|
opacities = opacities[mask] |
|
xyzs = self.get_xyz[mask] |
|
stds = self.get_scaling[mask] |
|
|
|
|
|
mn, mx = xyzs.amin(0), xyzs.amax(0) |
|
self.center = (mn + mx) / 2 |
|
self.scale = 1.8 / (mx - mn).amax().item() |
|
|
|
xyzs = (xyzs - self.center) * self.scale |
|
stds = stds * self.scale |
|
|
|
covs = self.covariance_activation(stds, 1, self._rotation[mask]) |
|
|
|
|
|
device = opacities.device |
|
occ = torch.zeros([resolution] * 3, dtype=torch.float32, device=device) |
|
|
|
X = torch.linspace(-1, 1, resolution).split(split_size) |
|
Y = torch.linspace(-1, 1, resolution).split(split_size) |
|
Z = torch.linspace(-1, 1, resolution).split(split_size) |
|
|
|
|
|
|
|
for xi, xs in enumerate(X): |
|
for yi, ys in enumerate(Y): |
|
for zi, zs in enumerate(Z): |
|
xx, yy, zz = torch.meshgrid(xs, ys, zs) |
|
|
|
pts = torch.cat([xx.reshape(-1, 1), yy.reshape(-1, 1), zz.reshape(-1, 1)], dim=-1).to(device) |
|
|
|
vmin, vmax = pts.amin(0), pts.amax(0) |
|
vmin -= block_size * relax_ratio |
|
vmax += block_size * relax_ratio |
|
mask = (xyzs < vmax).all(-1) & (xyzs > vmin).all(-1) |
|
|
|
if not mask.any(): |
|
continue |
|
mask_xyzs = xyzs[mask] |
|
mask_covs = covs[mask] |
|
mask_opas = opacities[mask].view(1, -1) |
|
|
|
|
|
g_pts = pts.unsqueeze(1).repeat(1, mask_covs.shape[0], 1) - mask_xyzs.unsqueeze(0) |
|
g_covs = mask_covs.unsqueeze(0).repeat(pts.shape[0], 1, 1) |
|
|
|
|
|
batch_g = 1024 |
|
val = 0 |
|
for start in range(0, g_covs.shape[1], batch_g): |
|
end = min(start + batch_g, g_covs.shape[1]) |
|
w = gaussian_3d_coeff(g_pts[:, start:end].reshape(-1, 3), g_covs[:, start:end].reshape(-1, 6)).reshape(pts.shape[0], -1) |
|
val += (mask_opas[:, start:end] * w).sum(-1) |
|
|
|
|
|
|
|
occ[xi * split_size: xi * split_size + len(xs), |
|
yi * split_size: yi * split_size + len(ys), |
|
zi * split_size: zi * split_size + len(zs)] = val.reshape(len(xs), len(ys), len(zs)) |
|
|
|
kiui.lo(occ, verbose=1) |
|
|
|
return occ |
|
|
|
def extract_mesh(self, path, density_thresh=1, resolution=128, decimate_target=1e5): |
|
|
|
os.makedirs(os.path.dirname(path), exist_ok=True) |
|
|
|
occ = self.extract_fields(resolution).detach().cpu().numpy() |
|
|
|
import mcubes |
|
vertices, triangles = mcubes.marching_cubes(occ, density_thresh) |
|
vertices = vertices / (resolution - 1.0) * 2 - 1 |
|
|
|
|
|
vertices = vertices / self.scale + self.center.detach().cpu().numpy() |
|
|
|
vertices, triangles = clean_mesh(vertices, triangles, remesh=True, remesh_size=0.015) |
|
if decimate_target > 0 and triangles.shape[0] > decimate_target: |
|
vertices, triangles = decimate_mesh(vertices, triangles, decimate_target) |
|
|
|
v = torch.from_numpy(vertices.astype(np.float32)).contiguous().cuda() |
|
f = torch.from_numpy(triangles.astype(np.int32)).contiguous().cuda() |
|
|
|
print( |
|
f"[INFO] marching cubes result: {v.shape} ({v.min().item()}-{v.max().item()}), {f.shape}" |
|
) |
|
|
|
mesh = Mesh(v=v, f=f, device='cuda') |
|
|
|
return mesh |
|
|
|
def get_covariance(self, scaling_modifier = 1): |
|
return self.covariance_activation(self.get_scaling, scaling_modifier, self._rotation) |
|
|
|
def oneupSHdegree(self): |
|
if self.active_sh_degree < self.max_sh_degree: |
|
self.active_sh_degree += 1 |
|
|
|
def create_from_pcd(self, pcd : BasicPointCloud, spatial_lr_scale : float = 1): |
|
self.spatial_lr_scale = spatial_lr_scale |
|
fused_point_cloud = torch.tensor(np.asarray(pcd.points)).float().cuda() |
|
fused_color = RGB2SH(torch.tensor(np.asarray(pcd.colors)).float().cuda()) |
|
features = torch.zeros((fused_color.shape[0], 3, (self.max_sh_degree + 1) ** 2)).float().cuda() |
|
features[:, :3, 0 ] = fused_color |
|
features[:, 3:, 1:] = 0.0 |
|
|
|
print("Number of points at initialisation : ", fused_point_cloud.shape[0]) |
|
|
|
dist2 = torch.clamp_min(distCUDA2(torch.from_numpy(np.asarray(pcd.points)).float().cuda()), 0.0000001) |
|
scales = torch.log(torch.sqrt(dist2))[...,None].repeat(1, 3) |
|
rots = torch.zeros((fused_point_cloud.shape[0], 4), device="cuda") |
|
rots[:, 0] = 1 |
|
|
|
opacities = inverse_sigmoid(0.1 * torch.ones((fused_point_cloud.shape[0], 1), dtype=torch.float, device="cuda")) |
|
|
|
self._xyz = nn.Parameter(fused_point_cloud.requires_grad_(True)) |
|
self._features_dc = nn.Parameter(features[:,:,0:1].transpose(1, 2).contiguous().requires_grad_(True)) |
|
self._features_rest = nn.Parameter(features[:,:,1:].transpose(1, 2).contiguous().requires_grad_(True)) |
|
self._scaling = nn.Parameter(scales.requires_grad_(True)) |
|
self._rotation = nn.Parameter(rots.requires_grad_(True)) |
|
self._opacity = nn.Parameter(opacities.requires_grad_(True)) |
|
self.max_radii2D = torch.zeros((self.get_xyz.shape[0]), device="cuda") |
|
|
|
def training_setup(self, training_args): |
|
self.percent_dense = training_args.percent_dense |
|
self.xyz_gradient_accum = torch.zeros((self.get_xyz.shape[0], 1), device="cuda") |
|
self.denom = torch.zeros((self.get_xyz.shape[0], 1), device="cuda") |
|
|
|
l = [ |
|
{'params': [self._xyz], 'lr': training_args.position_lr_init * self.spatial_lr_scale, "name": "xyz"}, |
|
{'params': [self._features_dc], 'lr': training_args.feature_lr, "name": "f_dc"}, |
|
{'params': [self._features_rest], 'lr': training_args.feature_lr / 20.0, "name": "f_rest"}, |
|
{'params': [self._opacity], 'lr': training_args.opacity_lr, "name": "opacity"}, |
|
{'params': [self._scaling], 'lr': training_args.scaling_lr, "name": "scaling"}, |
|
{'params': [self._rotation], 'lr': training_args.rotation_lr, "name": "rotation"} |
|
] |
|
|
|
self.optimizer = torch.optim.Adam(l, lr=0.0, eps=1e-15) |
|
self.xyz_scheduler_args = get_expon_lr_func(lr_init=training_args.position_lr_init*self.spatial_lr_scale, |
|
lr_final=training_args.position_lr_final*self.spatial_lr_scale, |
|
lr_delay_mult=training_args.position_lr_delay_mult, |
|
max_steps=training_args.position_lr_max_steps) |
|
|
|
def update_learning_rate(self, iteration): |
|
''' Learning rate scheduling per step ''' |
|
for param_group in self.optimizer.param_groups: |
|
if param_group["name"] == "xyz": |
|
lr = self.xyz_scheduler_args(iteration) |
|
param_group['lr'] = lr |
|
return lr |
|
|
|
def construct_list_of_attributes(self): |
|
l = ['x', 'y', 'z', 'nx', 'ny', 'nz'] |
|
|
|
for i in range(self._features_dc.shape[1]*self._features_dc.shape[2]): |
|
l.append('f_dc_{}'.format(i)) |
|
for i in range(self._features_rest.shape[1]*self._features_rest.shape[2]): |
|
l.append('f_rest_{}'.format(i)) |
|
l.append('opacity') |
|
for i in range(self._scaling.shape[1]): |
|
l.append('scale_{}'.format(i)) |
|
for i in range(self._rotation.shape[1]): |
|
l.append('rot_{}'.format(i)) |
|
return l |
|
|
|
def save_ply(self, path): |
|
os.makedirs(os.path.dirname(path), exist_ok=True) |
|
|
|
xyz = self._xyz.detach().cpu().numpy() |
|
normals = np.zeros_like(xyz) |
|
f_dc = self._features_dc.detach().transpose(1, 2).flatten(start_dim=1).contiguous().cpu().numpy() |
|
f_rest = self._features_rest.detach().transpose(1, 2).flatten(start_dim=1).contiguous().cpu().numpy() |
|
opacities = self._opacity.detach().cpu().numpy() |
|
scale = self._scaling.detach().cpu().numpy() |
|
rotation = self._rotation.detach().cpu().numpy() |
|
|
|
dtype_full = [(attribute, 'f4') for attribute in self.construct_list_of_attributes()] |
|
|
|
elements = np.empty(xyz.shape[0], dtype=dtype_full) |
|
attributes = np.concatenate((xyz, normals, f_dc, f_rest, opacities, scale, rotation), axis=1) |
|
elements[:] = list(map(tuple, attributes)) |
|
el = PlyElement.describe(elements, 'vertex') |
|
PlyData([el]).write(path) |
|
|
|
def reset_opacity(self): |
|
opacities_new = inverse_sigmoid(torch.min(self.get_opacity, torch.ones_like(self.get_opacity)*0.01)) |
|
optimizable_tensors = self.replace_tensor_to_optimizer(opacities_new, "opacity") |
|
self._opacity = optimizable_tensors["opacity"] |
|
|
|
def load_ply(self, path): |
|
plydata = PlyData.read(path) |
|
|
|
xyz = np.stack((np.asarray(plydata.elements[0]["x"]), |
|
np.asarray(plydata.elements[0]["y"]), |
|
np.asarray(plydata.elements[0]["z"])), axis=1) |
|
opacities = np.asarray(plydata.elements[0]["opacity"])[..., np.newaxis] |
|
|
|
print("Number of points at loading : ", xyz.shape[0]) |
|
|
|
features_dc = np.zeros((xyz.shape[0], 3, 1)) |
|
features_dc[:, 0, 0] = np.asarray(plydata.elements[0]["f_dc_0"]) |
|
features_dc[:, 1, 0] = np.asarray(plydata.elements[0]["f_dc_1"]) |
|
features_dc[:, 2, 0] = np.asarray(plydata.elements[0]["f_dc_2"]) |
|
|
|
extra_f_names = [p.name for p in plydata.elements[0].properties if p.name.startswith("f_rest_")] |
|
assert len(extra_f_names)==3*(self.max_sh_degree + 1) ** 2 - 3 |
|
features_extra = np.zeros((xyz.shape[0], len(extra_f_names))) |
|
for idx, attr_name in enumerate(extra_f_names): |
|
features_extra[:, idx] = np.asarray(plydata.elements[0][attr_name]) |
|
|
|
features_extra = features_extra.reshape((features_extra.shape[0], 3, (self.max_sh_degree + 1) ** 2 - 1)) |
|
|
|
scale_names = [p.name for p in plydata.elements[0].properties if p.name.startswith("scale_")] |
|
scales = np.zeros((xyz.shape[0], len(scale_names))) |
|
for idx, attr_name in enumerate(scale_names): |
|
scales[:, idx] = np.asarray(plydata.elements[0][attr_name]) |
|
|
|
rot_names = [p.name for p in plydata.elements[0].properties if p.name.startswith("rot")] |
|
rots = np.zeros((xyz.shape[0], len(rot_names))) |
|
for idx, attr_name in enumerate(rot_names): |
|
rots[:, idx] = np.asarray(plydata.elements[0][attr_name]) |
|
|
|
self._xyz = nn.Parameter(torch.tensor(xyz, dtype=torch.float, device="cuda").requires_grad_(True)) |
|
self._features_dc = nn.Parameter(torch.tensor(features_dc, dtype=torch.float, device="cuda").transpose(1, 2).contiguous().requires_grad_(True)) |
|
self._features_rest = nn.Parameter(torch.tensor(features_extra, dtype=torch.float, device="cuda").transpose(1, 2).contiguous().requires_grad_(True)) |
|
self._opacity = nn.Parameter(torch.tensor(opacities, dtype=torch.float, device="cuda").requires_grad_(True)) |
|
self._scaling = nn.Parameter(torch.tensor(scales, dtype=torch.float, device="cuda").requires_grad_(True)) |
|
self._rotation = nn.Parameter(torch.tensor(rots, dtype=torch.float, device="cuda").requires_grad_(True)) |
|
|
|
self.active_sh_degree = self.max_sh_degree |
|
|
|
def replace_tensor_to_optimizer(self, tensor, name): |
|
optimizable_tensors = {} |
|
for group in self.optimizer.param_groups: |
|
if group["name"] == name: |
|
stored_state = self.optimizer.state.get(group['params'][0], None) |
|
stored_state["exp_avg"] = torch.zeros_like(tensor) |
|
stored_state["exp_avg_sq"] = torch.zeros_like(tensor) |
|
|
|
del self.optimizer.state[group['params'][0]] |
|
group["params"][0] = nn.Parameter(tensor.requires_grad_(True)) |
|
self.optimizer.state[group['params'][0]] = stored_state |
|
|
|
optimizable_tensors[group["name"]] = group["params"][0] |
|
return optimizable_tensors |
|
|
|
def _prune_optimizer(self, mask): |
|
optimizable_tensors = {} |
|
for group in self.optimizer.param_groups: |
|
stored_state = self.optimizer.state.get(group['params'][0], None) |
|
if stored_state is not None: |
|
stored_state["exp_avg"] = stored_state["exp_avg"][mask] |
|
stored_state["exp_avg_sq"] = stored_state["exp_avg_sq"][mask] |
|
|
|
del self.optimizer.state[group['params'][0]] |
|
group["params"][0] = nn.Parameter((group["params"][0][mask].requires_grad_(True))) |
|
self.optimizer.state[group['params'][0]] = stored_state |
|
|
|
optimizable_tensors[group["name"]] = group["params"][0] |
|
else: |
|
group["params"][0] = nn.Parameter(group["params"][0][mask].requires_grad_(True)) |
|
optimizable_tensors[group["name"]] = group["params"][0] |
|
return optimizable_tensors |
|
|
|
def prune_points(self, mask): |
|
valid_points_mask = ~mask |
|
optimizable_tensors = self._prune_optimizer(valid_points_mask) |
|
|
|
self._xyz = optimizable_tensors["xyz"] |
|
self._features_dc = optimizable_tensors["f_dc"] |
|
self._features_rest = optimizable_tensors["f_rest"] |
|
self._opacity = optimizable_tensors["opacity"] |
|
self._scaling = optimizable_tensors["scaling"] |
|
self._rotation = optimizable_tensors["rotation"] |
|
|
|
self.xyz_gradient_accum = self.xyz_gradient_accum[valid_points_mask] |
|
|
|
self.denom = self.denom[valid_points_mask] |
|
self.max_radii2D = self.max_radii2D[valid_points_mask] |
|
|
|
def cat_tensors_to_optimizer(self, tensors_dict): |
|
optimizable_tensors = {} |
|
for group in self.optimizer.param_groups: |
|
assert len(group["params"]) == 1 |
|
extension_tensor = tensors_dict[group["name"]] |
|
stored_state = self.optimizer.state.get(group['params'][0], None) |
|
if stored_state is not None: |
|
|
|
stored_state["exp_avg"] = torch.cat((stored_state["exp_avg"], torch.zeros_like(extension_tensor)), dim=0) |
|
stored_state["exp_avg_sq"] = torch.cat((stored_state["exp_avg_sq"], torch.zeros_like(extension_tensor)), dim=0) |
|
|
|
del self.optimizer.state[group['params'][0]] |
|
group["params"][0] = nn.Parameter(torch.cat((group["params"][0], extension_tensor), dim=0).requires_grad_(True)) |
|
self.optimizer.state[group['params'][0]] = stored_state |
|
|
|
optimizable_tensors[group["name"]] = group["params"][0] |
|
else: |
|
group["params"][0] = nn.Parameter(torch.cat((group["params"][0], extension_tensor), dim=0).requires_grad_(True)) |
|
optimizable_tensors[group["name"]] = group["params"][0] |
|
|
|
return optimizable_tensors |
|
|
|
def densification_postfix(self, new_xyz, new_features_dc, new_features_rest, new_opacities, new_scaling, new_rotation): |
|
d = {"xyz": new_xyz, |
|
"f_dc": new_features_dc, |
|
"f_rest": new_features_rest, |
|
"opacity": new_opacities, |
|
"scaling" : new_scaling, |
|
"rotation" : new_rotation} |
|
|
|
optimizable_tensors = self.cat_tensors_to_optimizer(d) |
|
self._xyz = optimizable_tensors["xyz"] |
|
self._features_dc = optimizable_tensors["f_dc"] |
|
self._features_rest = optimizable_tensors["f_rest"] |
|
self._opacity = optimizable_tensors["opacity"] |
|
self._scaling = optimizable_tensors["scaling"] |
|
self._rotation = optimizable_tensors["rotation"] |
|
|
|
self.xyz_gradient_accum = torch.zeros((self.get_xyz.shape[0], 1), device="cuda") |
|
self.denom = torch.zeros((self.get_xyz.shape[0], 1), device="cuda") |
|
self.max_radii2D = torch.zeros((self.get_xyz.shape[0]), device="cuda") |
|
|
|
def densify_and_split(self, grads, grad_threshold, scene_extent, N=2): |
|
n_init_points = self.get_xyz.shape[0] |
|
|
|
padded_grad = torch.zeros((n_init_points), device="cuda") |
|
padded_grad[:grads.shape[0]] = grads.squeeze() |
|
selected_pts_mask = torch.where(padded_grad >= grad_threshold, True, False) |
|
selected_pts_mask = torch.logical_and(selected_pts_mask, |
|
torch.max(self.get_scaling, dim=1).values > self.percent_dense*scene_extent) |
|
|
|
stds = self.get_scaling[selected_pts_mask].repeat(N,1) |
|
means =torch.zeros((stds.size(0), 3),device="cuda") |
|
samples = torch.normal(mean=means, std=stds) |
|
rots = build_rotation(self._rotation[selected_pts_mask]).repeat(N,1,1) |
|
new_xyz = torch.bmm(rots, samples.unsqueeze(-1)).squeeze(-1) + self.get_xyz[selected_pts_mask].repeat(N, 1) |
|
new_scaling = self.scaling_inverse_activation(self.get_scaling[selected_pts_mask].repeat(N,1) / (0.8*N)) |
|
new_rotation = self._rotation[selected_pts_mask].repeat(N,1) |
|
new_features_dc = self._features_dc[selected_pts_mask].repeat(N,1,1) |
|
new_features_rest = self._features_rest[selected_pts_mask].repeat(N,1,1) |
|
new_opacity = self._opacity[selected_pts_mask].repeat(N,1) |
|
|
|
self.densification_postfix(new_xyz, new_features_dc, new_features_rest, new_opacity, new_scaling, new_rotation) |
|
|
|
prune_filter = torch.cat((selected_pts_mask, torch.zeros(N * selected_pts_mask.sum(), device="cuda", dtype=bool))) |
|
self.prune_points(prune_filter) |
|
|
|
def densify_and_clone(self, grads, grad_threshold, scene_extent): |
|
|
|
selected_pts_mask = torch.where(torch.norm(grads, dim=-1) >= grad_threshold, True, False) |
|
selected_pts_mask = torch.logical_and(selected_pts_mask, |
|
torch.max(self.get_scaling, dim=1).values <= self.percent_dense*scene_extent) |
|
|
|
new_xyz = self._xyz[selected_pts_mask] |
|
new_features_dc = self._features_dc[selected_pts_mask] |
|
new_features_rest = self._features_rest[selected_pts_mask] |
|
new_opacities = self._opacity[selected_pts_mask] |
|
new_scaling = self._scaling[selected_pts_mask] |
|
new_rotation = self._rotation[selected_pts_mask] |
|
|
|
self.densification_postfix(new_xyz, new_features_dc, new_features_rest, new_opacities, new_scaling, new_rotation) |
|
|
|
def densify_and_prune(self, max_grad, min_opacity, extent, max_screen_size): |
|
grads = self.xyz_gradient_accum / self.denom |
|
grads[grads.isnan()] = 0.0 |
|
|
|
self.densify_and_clone(grads, max_grad, extent) |
|
self.densify_and_split(grads, max_grad, extent) |
|
|
|
prune_mask = (self.get_opacity < min_opacity).squeeze() |
|
if max_screen_size: |
|
big_points_vs = self.max_radii2D > max_screen_size |
|
big_points_ws = self.get_scaling.max(dim=1).values > 0.1 * extent |
|
prune_mask = torch.logical_or(torch.logical_or(prune_mask, big_points_vs), big_points_ws) |
|
self.prune_points(prune_mask) |
|
|
|
torch.cuda.empty_cache() |
|
|
|
def prune(self, min_opacity, extent, max_screen_size): |
|
|
|
prune_mask = (self.get_opacity < min_opacity).squeeze() |
|
if max_screen_size: |
|
big_points_vs = self.max_radii2D > max_screen_size |
|
big_points_ws = self.get_scaling.max(dim=1).values > 0.1 * extent |
|
prune_mask = torch.logical_or(torch.logical_or(prune_mask, big_points_vs), big_points_ws) |
|
self.prune_points(prune_mask) |
|
|
|
torch.cuda.empty_cache() |
|
|
|
|
|
def add_densification_stats(self, viewspace_point_tensor, update_filter): |
|
self.xyz_gradient_accum[update_filter] += torch.norm(viewspace_point_tensor.grad[update_filter,:2], dim=-1, keepdim=True) |
|
self.denom[update_filter] += 1 |
|
|
|
def getProjectionMatrix(znear, zfar, fovX, fovY): |
|
tanHalfFovY = math.tan((fovY / 2)) |
|
tanHalfFovX = math.tan((fovX / 2)) |
|
|
|
P = torch.zeros(4, 4) |
|
|
|
z_sign = 1.0 |
|
|
|
P[0, 0] = 1 / tanHalfFovX |
|
P[1, 1] = 1 / tanHalfFovY |
|
P[3, 2] = z_sign |
|
P[2, 2] = z_sign * zfar / (zfar - znear) |
|
P[2, 3] = -(zfar * znear) / (zfar - znear) |
|
return P |
|
|
|
|
|
class MiniCam: |
|
def __init__(self, c2w, width, height, fovy, fovx, znear, zfar): |
|
|
|
|
|
self.image_width = width |
|
self.image_height = height |
|
self.FoVy = fovy |
|
self.FoVx = fovx |
|
self.znear = znear |
|
self.zfar = zfar |
|
|
|
w2c = np.linalg.inv(c2w) |
|
|
|
|
|
w2c[1:3, :3] *= -1 |
|
w2c[:3, 3] *= -1 |
|
|
|
self.world_view_transform = torch.tensor(w2c).transpose(0, 1).cuda() |
|
self.projection_matrix = ( |
|
getProjectionMatrix( |
|
znear=self.znear, zfar=self.zfar, fovX=self.FoVx, fovY=self.FoVy |
|
) |
|
.transpose(0, 1) |
|
.cuda() |
|
) |
|
self.full_proj_transform = self.world_view_transform @ self.projection_matrix |
|
self.camera_center = -torch.tensor(c2w[:3, 3]).cuda() |
|
|
|
|
|
class Renderer: |
|
def __init__(self, sh_degree=3, white_background=True, radius=1): |
|
|
|
self.sh_degree = sh_degree |
|
self.white_background = white_background |
|
self.radius = radius |
|
|
|
self.gaussians = GaussianModel(sh_degree) |
|
|
|
self.bg_color = torch.tensor( |
|
[1, 1, 1] if white_background else [0, 0, 0], |
|
dtype=torch.float32, |
|
device="cuda", |
|
) |
|
|
|
def initialize(self, input=None, num_pts=5000, radius=0.5): |
|
|
|
if input is None: |
|
|
|
|
|
phis = np.random.random((num_pts,)) * 2 * np.pi |
|
costheta = np.random.random((num_pts,)) * 2 - 1 |
|
thetas = np.arccos(costheta) |
|
mu = np.random.random((num_pts,)) |
|
radius = radius * np.cbrt(mu) |
|
x = radius * np.sin(thetas) * np.cos(phis) |
|
y = radius * np.sin(thetas) * np.sin(phis) |
|
z = radius * np.cos(thetas) |
|
xyz = np.stack((x, y, z), axis=1) |
|
|
|
|
|
shs = np.random.random((num_pts, 3)) / 255.0 |
|
pcd = BasicPointCloud( |
|
points=xyz, colors=SH2RGB(shs), normals=np.zeros((num_pts, 3)) |
|
) |
|
self.gaussians.create_from_pcd(pcd, 10) |
|
elif isinstance(input, BasicPointCloud): |
|
|
|
self.gaussians.create_from_pcd(input, 1) |
|
else: |
|
|
|
self.gaussians.load_ply(input) |
|
|
|
def render( |
|
self, |
|
viewpoint_camera, |
|
scaling_modifier=1.0, |
|
invert_bg_color=False, |
|
override_color=None, |
|
compute_cov3D_python=False, |
|
convert_SHs_python=False, |
|
): |
|
|
|
screenspace_points = ( |
|
torch.zeros_like( |
|
self.gaussians.get_xyz, |
|
dtype=self.gaussians.get_xyz.dtype, |
|
requires_grad=True, |
|
device="cuda", |
|
) |
|
+ 0 |
|
) |
|
try: |
|
screenspace_points.retain_grad() |
|
except: |
|
pass |
|
|
|
|
|
tanfovx = math.tan(viewpoint_camera.FoVx * 0.5) |
|
tanfovy = math.tan(viewpoint_camera.FoVy * 0.5) |
|
|
|
raster_settings = GaussianRasterizationSettings( |
|
image_height=int(viewpoint_camera.image_height), |
|
image_width=int(viewpoint_camera.image_width), |
|
tanfovx=tanfovx, |
|
tanfovy=tanfovy, |
|
bg=self.bg_color if not invert_bg_color else 1 - self.bg_color, |
|
scale_modifier=scaling_modifier, |
|
viewmatrix=viewpoint_camera.world_view_transform, |
|
projmatrix=viewpoint_camera.full_proj_transform, |
|
sh_degree=self.gaussians.active_sh_degree, |
|
campos=viewpoint_camera.camera_center, |
|
prefiltered=False, |
|
debug=False, |
|
) |
|
|
|
rasterizer = GaussianRasterizer(raster_settings=raster_settings) |
|
|
|
means3D = self.gaussians.get_xyz |
|
means2D = screenspace_points |
|
opacity = self.gaussians.get_opacity |
|
|
|
|
|
|
|
scales = None |
|
rotations = None |
|
cov3D_precomp = None |
|
if compute_cov3D_python: |
|
cov3D_precomp = self.gaussians.get_covariance(scaling_modifier) |
|
else: |
|
scales = self.gaussians.get_scaling |
|
rotations = self.gaussians.get_rotation |
|
|
|
|
|
|
|
shs = None |
|
colors_precomp = None |
|
if colors_precomp is None: |
|
if convert_SHs_python: |
|
shs_view = self.gaussians.get_features.transpose(1, 2).view( |
|
-1, 3, (self.gaussians.max_sh_degree + 1) ** 2 |
|
) |
|
dir_pp = self.gaussians.get_xyz - viewpoint_camera.camera_center.repeat( |
|
self.gaussians.get_features.shape[0], 1 |
|
) |
|
dir_pp_normalized = dir_pp / dir_pp.norm(dim=1, keepdim=True) |
|
sh2rgb = eval_sh( |
|
self.gaussians.active_sh_degree, shs_view, dir_pp_normalized |
|
) |
|
colors_precomp = torch.clamp_min(sh2rgb + 0.5, 0.0) |
|
else: |
|
shs = self.gaussians.get_features |
|
else: |
|
colors_precomp = override_color |
|
|
|
|
|
rendered_image, radii, rendered_depth, rendered_alpha = rasterizer( |
|
means3D=means3D, |
|
means2D=means2D, |
|
shs=shs, |
|
colors_precomp=colors_precomp, |
|
opacities=opacity, |
|
scales=scales, |
|
rotations=rotations, |
|
cov3D_precomp=cov3D_precomp, |
|
) |
|
|
|
rendered_image = rendered_image.clamp(0, 1) |
|
|
|
|
|
|
|
return { |
|
"image": rendered_image, |
|
"depth": rendered_depth, |
|
"alpha": rendered_alpha, |
|
"viewspace_points": screenspace_points, |
|
"visibility_filter": radii > 0, |
|
"radii": radii, |
|
} |
|
|