|
import os |
|
import argparse |
|
import glob |
|
import logging |
|
import numpy as np |
|
import matplotlib.pyplot as plt |
|
import data_loader as loaders |
|
import data_collate as collates |
|
import json |
|
from model import GradTTSXvector, GradTTSWithEmo |
|
import torch |
|
|
|
|
|
def intersperse(lst, item): |
|
|
|
result = [item] * (len(lst) * 2 + 1) |
|
result[1::2] = lst |
|
return result |
|
|
|
|
|
def parse_filelist(filelist_path, split_char="|"): |
|
with open(filelist_path, encoding='utf-8') as f: |
|
filepaths_and_text = [line.strip().split(split_char) for line in f] |
|
return filepaths_and_text |
|
|
|
|
|
def latest_checkpoint_path(dir_path, regex="grad_*.pt"): |
|
f_list = glob.glob(os.path.join(dir_path, regex)) |
|
f_list.sort(key=lambda f: int("".join(filter(str.isdigit, f)))) |
|
x = f_list[-1] |
|
return x |
|
|
|
def load_checkpoint(checkpoint_path, model, optimizer=None): |
|
assert os.path.isfile(checkpoint_path) |
|
checkpoint_dict = torch.load(checkpoint_path, map_location='cpu') |
|
iteration = 1 |
|
if 'iteration' in checkpoint_dict.keys(): |
|
iteration = checkpoint_dict['iteration'] |
|
if 'learning_rate' in checkpoint_dict.keys(): |
|
learning_rate = checkpoint_dict['learning_rate'] |
|
else: |
|
learning_rate = None |
|
if optimizer is not None and 'optimizer' in checkpoint_dict.keys(): |
|
optimizer.load_state_dict(checkpoint_dict['optimizer']) |
|
saved_state_dict = checkpoint_dict['model'] |
|
if hasattr(model, 'module'): |
|
state_dict = model.module.state_dict() |
|
else: |
|
state_dict = model.state_dict() |
|
new_state_dict = {} |
|
for k, v in state_dict.items(): |
|
try: |
|
new_state_dict[k] = saved_state_dict[k] |
|
except: |
|
logger.info("%s is not in the checkpoint" % k) |
|
print("%s is not in the checkpoint" % k) |
|
new_state_dict[k] = v |
|
if hasattr(model, 'module'): |
|
model.module.load_state_dict(new_state_dict) |
|
else: |
|
model.load_state_dict(new_state_dict) |
|
return model, optimizer, learning_rate, iteration |
|
|
|
def load_checkpoint_no_logger(checkpoint_path, model, optimizer=None): |
|
assert os.path.isfile(checkpoint_path) |
|
checkpoint_dict = torch.load(checkpoint_path, map_location='cpu') |
|
iteration = 1 |
|
if 'iteration' in checkpoint_dict.keys(): |
|
iteration = checkpoint_dict['iteration'] |
|
if 'learning_rate' in checkpoint_dict.keys(): |
|
learning_rate = checkpoint_dict['learning_rate'] |
|
else: |
|
learning_rate = None |
|
if optimizer is not None and 'optimizer' in checkpoint_dict.keys(): |
|
optimizer.load_state_dict(checkpoint_dict['optimizer']) |
|
saved_state_dict = checkpoint_dict['model'] |
|
if hasattr(model, 'module'): |
|
state_dict = model.module.state_dict() |
|
else: |
|
state_dict = model.state_dict() |
|
new_state_dict = {} |
|
for k, v in state_dict.items(): |
|
try: |
|
new_state_dict[k] = saved_state_dict[k] |
|
except: |
|
print("%s is not in the checkpoint" % k) |
|
new_state_dict[k] = v |
|
if hasattr(model, 'module'): |
|
model.module.load_state_dict(new_state_dict) |
|
else: |
|
model.load_state_dict(new_state_dict) |
|
return model, optimizer, learning_rate, iteration |
|
|
|
def save_figure_to_numpy(fig): |
|
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='') |
|
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,)) |
|
return data |
|
|
|
|
|
def plot_tensor(tensor): |
|
plt.style.use('default') |
|
fig, ax = plt.subplots(figsize=(12, 3)) |
|
im = ax.imshow(tensor, aspect="auto", origin="lower", interpolation='none') |
|
plt.colorbar(im, ax=ax) |
|
plt.tight_layout() |
|
fig.canvas.draw() |
|
data = save_figure_to_numpy(fig) |
|
plt.close() |
|
return data |
|
|
|
|
|
def save_plot(tensor, savepath): |
|
plt.style.use('default') |
|
fig, ax = plt.subplots(figsize=(12, 3)) |
|
im = ax.imshow(tensor, aspect="auto", origin="lower", interpolation='none') |
|
plt.colorbar(im, ax=ax) |
|
plt.tight_layout() |
|
fig.canvas.draw() |
|
plt.savefig(savepath) |
|
plt.close() |
|
return |
|
|
|
|
|
def get_correct_class(hps, train=True): |
|
if train: |
|
if hps.xvector and hps.pe: |
|
raise NotImplementedError |
|
elif hps.xvector: |
|
raise NotImplementedError |
|
loader = loaders.XvectorLoader |
|
collate = collates.XvectorCollate |
|
model = GradTTSXvector |
|
dataset = loader(utts=hps.data.train_utts, |
|
hparams=hps.data, |
|
feats_scp=hps.data.train_feats_scp, |
|
utt2phns=hps.data.train_utt2phns, |
|
phn2id=hps.data.phn2id, |
|
utt2phn_duration=hps.data.train_utt2phn_duration, |
|
spk_xvector_scp=hps.data.train_spk_xvector_scp, |
|
utt2spk_name=hps.data.train_utt2spk) |
|
elif hps.pe: |
|
raise NotImplementedError |
|
else: |
|
loader = loaders.SpkIDLoaderWithEmo |
|
collate = collates.SpkIDCollateWithEmo |
|
model = GradTTSWithEmo |
|
dataset = loader(utts=hps.data.train_utts, |
|
hparams=hps.data, |
|
feats_scp=hps.data.train_feats_scp, |
|
utt2text=hps.data.train_utt2phns, |
|
utt2spk=hps.data.train_utt2spk, |
|
utt2emo=hps.data.train_utt2emo) |
|
else: |
|
if hps.xvector and hps.pe: |
|
raise NotImplementedError |
|
elif hps.xvector: |
|
raise NotImplementedError |
|
loader = loaders.XvectorLoader |
|
collate = collates.XvectorCollate |
|
model = GradTTSXvector |
|
dataset = loader(utts=hps.data.val_utts, |
|
hparams=hps.data, |
|
feats_scp=hps.data.val_feats_scp, |
|
utt2phns=hps.data.val_utt2phns, |
|
phn2id=hps.data.phn2id, |
|
utt2phn_duration=hps.data.val_utt2phn_duration, |
|
spk_xvector_scp=hps.data.val_spk_xvector_scp, |
|
utt2spk_name=hps.data.val_utt2spk) |
|
elif hps.pe: |
|
raise NotImplementedError |
|
else: |
|
loader = loaders.SpkIDLoaderWithEmo |
|
collate = collates.SpkIDCollateWithEmo |
|
model = GradTTSWithEmo |
|
dataset = loader(utts=hps.data.val_utts, |
|
hparams=hps.data, |
|
feats_scp=hps.data.val_feats_scp, |
|
utt2text=hps.data.val_utt2phns, |
|
utt2spk=hps.data.val_utt2spk, |
|
utt2emo=hps.data.val_utt2emo) |
|
return dataset, collate(), model |
|
|
|
|
|
def get_hparams(init=True): |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('-c', '--config', type=str, default="./configs/train_grad.json", |
|
help='JSON file for configuration') |
|
parser.add_argument('-m', '--model', type=str, required=True, |
|
help='Model name') |
|
parser.add_argument('-s', '--seed', type=int, default=1234) |
|
parser.add_argument('--not-pretrained', action='store_true', help='if set to true, then train from scratch') |
|
|
|
args = parser.parse_args() |
|
model_dir = os.path.join("./logs", args.model) |
|
|
|
if not os.path.exists(model_dir): |
|
os.makedirs(model_dir) |
|
|
|
config_path = args.config |
|
config_save_path = os.path.join(model_dir, "config.json") |
|
if init: |
|
with open(config_path, "r") as f: |
|
data = f.read() |
|
with open(config_save_path, "w") as f: |
|
f.write(data) |
|
else: |
|
with open(config_save_path, "r") as f: |
|
data = f.read() |
|
config = json.loads(data) |
|
|
|
hparams = HParams(**config) |
|
hparams.model_dir = model_dir |
|
hparams.train.seed = args.seed |
|
hparams.not_pretrained = args.not_pretrained |
|
return hparams |
|
|
|
|
|
class HParams(): |
|
def __init__(self, **kwargs): |
|
for k, v in kwargs.items(): |
|
if type(v) == dict: |
|
v = HParams(**v) |
|
self[k] = v |
|
|
|
def keys(self): |
|
return self.__dict__.keys() |
|
|
|
def items(self): |
|
return self.__dict__.items() |
|
|
|
def values(self): |
|
return self.__dict__.values() |
|
|
|
def __len__(self): |
|
return len(self.__dict__) |
|
|
|
def __getitem__(self, key): |
|
return getattr(self, key) |
|
|
|
def __setitem__(self, key, value): |
|
return setattr(self, key, value) |
|
|
|
def __contains__(self, key): |
|
return key in self.__dict__ |
|
|
|
def __repr__(self): |
|
return self.__dict__.__repr__() |
|
|
|
|
|
def get_logger(model_dir, filename="train.log"): |
|
global logger |
|
logger = logging.getLogger(os.path.basename(model_dir)) |
|
logger.setLevel(logging.DEBUG) |
|
|
|
formatter = logging.Formatter("%(asctime)s\t%(name)s\t%(levelname)s\t%(message)s") |
|
if not os.path.exists(model_dir): |
|
os.makedirs(model_dir) |
|
h = logging.FileHandler(os.path.join(model_dir, filename)) |
|
h.setLevel(logging.DEBUG) |
|
h.setFormatter(formatter) |
|
logger.addHandler(h) |
|
return logger |
|
|
|
|
|
def save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path): |
|
logger.info("Saving model and optimizer state at iteration {} to {}".format( |
|
iteration, checkpoint_path)) |
|
if hasattr(model, 'module'): |
|
state_dict = model.module.state_dict() |
|
else: |
|
state_dict = model.state_dict() |
|
torch.save({'model': state_dict, |
|
'iteration': iteration, |
|
'optimizer': optimizer.state_dict(), |
|
'learning_rate': learning_rate}, checkpoint_path) |
|
|
|
|
|
def get_hparams_decode(model_dir=None): |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('-c', '--config', type=str, default="./configs/train_grad.json", |
|
help='JSON file for configuration') |
|
parser.add_argument('-m', '--model', type=str, default=model_dir, |
|
help='Model name') |
|
parser.add_argument('-s', '--seed', type=int, default=1234) |
|
parser.add_argument('-t', "--timesteps", type=int, default=10, help='how many timesteps to perform reverse diffusion') |
|
|
|
parser.add_argument("--stoc", action='store_true', default=False, help="Whether to add stochastic term into decoding") |
|
parser.add_argument("-g", "--guidance", type=float, default=3, help='classifier guidance') |
|
parser.add_argument('-n', '--noise', type=float, default=1.5, help='to multiply sigma') |
|
|
|
parser.add_argument('-f', '--file', type=str, required=True, help='path to a file with texts to synthesize') |
|
parser.add_argument('-r', '--generated_path', type=str, required=True, help='path to save wav files') |
|
|
|
args = parser.parse_args() |
|
model_dir = os.path.join("./logs", args.model) |
|
|
|
if not os.path.exists(model_dir): |
|
os.makedirs(model_dir) |
|
|
|
config_path = args.config |
|
config_save_path = os.path.join(model_dir, "config.json") |
|
with open(config_path, "r") as f: |
|
data = f.read() |
|
config = json.loads(data) |
|
|
|
hparams = HParams(**config) |
|
hparams.model_dir = model_dir |
|
hparams.train.seed = args.seed |
|
|
|
return hparams, args |
|
|
|
|
|
def get_hparams_decode_two_mixture(model_dir=None): |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('-c', '--config', type=str, default="./configs/train_grad.json", |
|
help='JSON file for configuration') |
|
parser.add_argument('-m', '--model', type=str, required=False, default='.', |
|
help='Model name') |
|
parser.add_argument('-s', '--seed', type=int, default=1234) |
|
parser.add_argument('--dataset', choices=['train', 'val'], default='val', type=str, help='which dataset to use') |
|
parser.add_argument('--use-control-spk', action='store_true', help='whether to use GT spk or other spk') |
|
parser.add_argument('--control-spk-id', default=None, type=int, help='if use control spk, then which spk') |
|
parser.add_argument("--use-control-emo", action='store_true') |
|
parser.add_argument("--control-emo-id1", type=int) |
|
parser.add_argument("--control-emo-id2", type=int) |
|
parser.add_argument("--emo1-weight", type=float, default=0.5) |
|
|
|
parser.add_argument('--control-spk-name', default=None, type=str, help='if use control spk, then which spk') |
|
parser.add_argument("--max-utt-num", default=100, type=int, help='maximum utts number to decode') |
|
parser.add_argument("--specify-utt-name", default=None, type=str, help='if specified, only decodes for that utt') |
|
parser.add_argument('-t', "--timesteps", type=int, default=10, help='how many timesteps to perform reverse diffusion') |
|
|
|
parser.add_argument("--stoc", action='store_true', default=False, help="Whether to add stochastic term into decoding") |
|
parser.add_argument("-g", "--guidance", type=float, default=3, help='classifier guidance') |
|
parser.add_argument('-n', '--noise', type=float, default=1.5, help='to multiply sigma') |
|
|
|
parser.add_argument('--text', type=str, default=None, help="given text file") |
|
|
|
args = parser.parse_args() |
|
model_dir = os.path.join("./logs", args.model) |
|
|
|
if not os.path.exists(model_dir): |
|
os.makedirs(model_dir) |
|
|
|
config_path = args.config |
|
config_save_path = os.path.join(model_dir, "config.json") |
|
with open(config_path, "r") as f: |
|
data = f.read() |
|
config = json.loads(data) |
|
|
|
hparams = HParams(**config) |
|
hparams.model_dir = model_dir |
|
hparams.train.seed = args.seed |
|
|
|
if args.use_control_spk: |
|
if hparams.xvector: |
|
assert args.control_spk_name is not None |
|
else: |
|
assert args.control_spk_id is not None |
|
|
|
return hparams, args |
|
|
|
|
|
def get_hparams_classifier_objective(): |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('-c', '--config', type=str, default="./configs/base.json", |
|
help='JSON file for configuration') |
|
parser.add_argument('-m', '--model', type=str, required=True, |
|
help='Model name') |
|
parser.add_argument('-s', '--seed', type=int, default=1234) |
|
parser.add_argument('--dataset', choices=['train', 'val'], default='val', type=str, help='which dataset to use') |
|
parser.add_argument('--use-control-spk', action='store_true', help='whether to use GT spk or other spk') |
|
parser.add_argument('--control-spk-id', default=None, type=int, help='if use control spk, then which spk') |
|
parser.add_argument("--use-control-emo", action='store_true') |
|
parser.add_argument("--max-utt-num", default=100, type=int, help='maximum utts number to decode') |
|
parser.add_argument("--specify-utt-name", default=None, type=str, help='if specified, only decodes for that utt') |
|
|
|
parser.add_argument('--text', type=str, default=None, help="given text file") |
|
parser.add_argument("--feat", type=str, default=None, help='given feats.scp after CMVN') |
|
parser.add_argument("--dur", type=str, default=None, help='Force durations') |
|
|
|
args = parser.parse_args() |
|
model_dir = os.path.join("./logs", args.model) |
|
|
|
if not os.path.exists(model_dir): |
|
os.makedirs(model_dir) |
|
|
|
config_path = args.config |
|
config_save_path = os.path.join(model_dir, "config.json") |
|
with open(config_path, "r") as f: |
|
data = f.read() |
|
config = json.loads(data) |
|
|
|
hparams = HParams(**config) |
|
hparams.model_dir = model_dir |
|
hparams.train.seed = args.seed |
|
|
|
if args.use_control_spk: |
|
if hparams.xvector: |
|
assert args.control_spk_name is not None |
|
else: |
|
assert args.control_spk_id is not None |
|
|
|
return hparams, args |
|
|