Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,235 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import random
|
| 3 |
+
from huggingface_hub import InferenceClient
|
| 4 |
+
|
| 5 |
+
import pandas as pd
|
| 6 |
+
|
| 7 |
+
from sentence_transformers import SentenceTransformer
|
| 8 |
+
import torch
|
| 9 |
+
|
| 10 |
+
# LOAD FILES
|
| 11 |
+
|
| 12 |
+
def load_files(path):
|
| 13 |
+
with open(path, "r", encoding = "utf-8") as f:
|
| 14 |
+
return f.read()
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
charities_text = load_files("charities.txt")
|
| 18 |
+
financial_advice_text = load_files("financial_advice.txt")
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
#
|
| 22 |
+
|
| 23 |
+
###
|
| 24 |
+
def preprocess_text(text):
|
| 25 |
+
# Strip extra whitespace from the beginning and the end of the text
|
| 26 |
+
cleaned_text = text.strip()
|
| 27 |
+
|
| 28 |
+
# Split the cleaned_text by every newline character (\n)
|
| 29 |
+
chunks = cleaned_text.split("\n")
|
| 30 |
+
|
| 31 |
+
# Create an empty list to store cleaned chunks
|
| 32 |
+
cleaned_chunks = []
|
| 33 |
+
|
| 34 |
+
# Write your for-in loop below to clean each chunk and add it to the cleaned_chunks list
|
| 35 |
+
for chunk in chunks:
|
| 36 |
+
stripped_chunk = chunk.strip()
|
| 37 |
+
if len(stripped_chunk) > 0:
|
| 38 |
+
cleaned_chunks.append(stripped_chunk)
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
# Print the length of cleaned_chunks
|
| 42 |
+
num_of_chunks = len(cleaned_chunks)
|
| 43 |
+
# print(num_of_chunks)
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
return cleaned_chunks
|
| 47 |
+
|
| 48 |
+
cleaned_charities = preprocess_text(charities_text)
|
| 49 |
+
cleaned_finance = preprocess_text(financial_advice_text)
|
| 50 |
+
|
| 51 |
+
# Load the pre-trained embedding model that converts text to vectors
|
| 52 |
+
model = SentenceTransformer('all-MiniLM-L6-v2')
|
| 53 |
+
|
| 54 |
+
### STEP 4
|
| 55 |
+
def create_embeddings(text_chunks):
|
| 56 |
+
# Convert each text chunk into a vector embedding and store as a tensor
|
| 57 |
+
chunk_embeddings = model.encode(text_chunks, convert_to_tensor=True) # Replace ... with the text_chunks list
|
| 58 |
+
|
| 59 |
+
# Print the chunk embeddings
|
| 60 |
+
print(chunk_embeddings)
|
| 61 |
+
|
| 62 |
+
# Print the shape of chunk_embeddings
|
| 63 |
+
print(chunk_embeddings.shape)
|
| 64 |
+
|
| 65 |
+
# Return the chunk_embeddings
|
| 66 |
+
return chunk_embeddings
|
| 67 |
+
|
| 68 |
+
charity_embeddings = create_embeddings(cleaned_charities)
|
| 69 |
+
finance_embeddings = create_embeddings(cleaned_finance)
|
| 70 |
+
|
| 71 |
+
###STEP 5
|
| 72 |
+
# Define a function to find the most relevant text chunks for a given query, chunk_embeddings, and text_chunks
|
| 73 |
+
def get_top_chunks(query, chunk_embeddings, text_chunks):
|
| 74 |
+
# Convert the query text into a vector embedding
|
| 75 |
+
query_embedding = model.encode(query, convert_to_tensor = True) # Complete this line
|
| 76 |
+
|
| 77 |
+
# Normalize the query embedding to unit length for accurate similarity comparison
|
| 78 |
+
query_embedding_normalized = query_embedding / query_embedding.norm()
|
| 79 |
+
|
| 80 |
+
# Normalize all chunk embeddings to unit length for consistent comparison
|
| 81 |
+
chunk_embeddings_normalized = chunk_embeddings / chunk_embeddings.norm(dim=1, keepdim=True)
|
| 82 |
+
|
| 83 |
+
# Calculate cosine similarity between query and all chunks using matrix multiplication
|
| 84 |
+
similarities = torch.matmul(chunk_embeddings_normalized, query_embedding_normalized) # Complete this line
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
# Find the indices of the 3 chunks with highest similarity scores
|
| 89 |
+
top_indices = torch.topk(similarities, k=3).indices
|
| 90 |
+
|
| 91 |
+
# Create an empty list to store the most relevant chunks
|
| 92 |
+
top_chunks = []
|
| 93 |
+
|
| 94 |
+
# Loop through the top indices and retrieve the corresponding text chunks
|
| 95 |
+
for i in top_indices:
|
| 96 |
+
relevant_info = text_chunks[i]
|
| 97 |
+
top_chunks.append(relevant_info)
|
| 98 |
+
|
| 99 |
+
# Return the list of most relevant chunks
|
| 100 |
+
return top_chunks
|
| 101 |
+
|
| 102 |
+
#CSV files
|
| 103 |
+
columns = ["TransactionID", "UserID", "Date", "Description", "Amount", "Type", "Extra1", "Extra2"]
|
| 104 |
+
spendings = pd.read_csv("september_transactions_detailed.csv", names = columns)
|
| 105 |
+
spendings['Amount'] = pd.to_numeric(spendings['Amount'], errors='coerce').fillna(0)
|
| 106 |
+
|
| 107 |
+
def get_advice(user_id):
|
| 108 |
+
user_data = spendings[spendings['UserID'] == user_id]
|
| 109 |
+
|
| 110 |
+
if user_data.empty:
|
| 111 |
+
return "No spending data found for this user."
|
| 112 |
+
|
| 113 |
+
# Only consider expenses
|
| 114 |
+
expenses = user_data[user_data['Type'].str.lower() == "expense"]
|
| 115 |
+
total_spent = expenses['Amount'].sum()
|
| 116 |
+
category_spent = expenses.groupby('Description')['Amount'].sum().to_dict()
|
| 117 |
+
|
| 118 |
+
advice = []
|
| 119 |
+
for cat, amt in category_spent.items():
|
| 120 |
+
if amt > total_spent * 0.3:
|
| 121 |
+
advice.append(f"You spend a lot on {cat}. Consider budgeting here.")
|
| 122 |
+
|
| 123 |
+
advice_text = " | ".join(advice) if advice else "Your spending looks balanced across categories."
|
| 124 |
+
|
| 125 |
+
summary_text = f"Total spent: ${total_spent:.2f}. Category breakdown: {category_spent}. Advice: {advice_text}"
|
| 126 |
+
|
| 127 |
+
return summary_text
|
| 128 |
+
|
| 129 |
+
#AI API being used
|
| 130 |
+
client= InferenceClient("openai/gpt-oss-20b")
|
| 131 |
+
#defining role of AI and user
|
| 132 |
+
|
| 133 |
+
information=""
|
| 134 |
+
|
| 135 |
+
def respond(message, history, chatbot_topic_values, chatbot_mode_values, user_id=1):
|
| 136 |
+
topic_chunks = []
|
| 137 |
+
if chatbot_topic_values and "Helping Charities" in chatbot_topic_values:
|
| 138 |
+
topic_chunks = get_top_chunks(message, charity_embeddings, cleaned_charities)
|
| 139 |
+
elif chatbot_topic_values and "Financial Aid" in chatbot_topic_values:
|
| 140 |
+
topic_chunks = get_top_chunks(message, finance_embeddings, cleaned_finance)
|
| 141 |
+
|
| 142 |
+
csv_advice = get_advice(user_id)
|
| 143 |
+
|
| 144 |
+
if chatbot_mode_values and "General Advice" in chatbot_mode_values:
|
| 145 |
+
role_message = (
|
| 146 |
+
"You are a helpful and insightful chatbot who acts like a financial "
|
| 147 |
+
"advisor of a university student. Respond in under five bullet points, "
|
| 148 |
+
f"under 500 characters, using this context: {topic_chunks}"
|
| 149 |
+
)
|
| 150 |
+
elif chatbot_mode_values and "Personal Advice" in chatbot_mode_values:
|
| 151 |
+
role_message = (
|
| 152 |
+
"You are a helpful and insightful chatbot who acts like a financial "
|
| 153 |
+
"DO NOT ask the user for additional numbers or input"
|
| 154 |
+
f"Use the following spending data from the CSV file to provide advice {csv_advice}"
|
| 155 |
+
)
|
| 156 |
+
else:
|
| 157 |
+
role_message = f"You are a helpful chatbot. Use this context: {topic_chunks}"
|
| 158 |
+
messages = [{"role": "assistant", "content": role_message}]
|
| 159 |
+
if history:
|
| 160 |
+
messages.extend(history)
|
| 161 |
+
messages.append({"role": "user", "content": message})
|
| 162 |
+
|
| 163 |
+
response = client.chat_completion(messages, temperature=0.2)
|
| 164 |
+
return response['choices'][0]['message']['content'].strip()
|
| 165 |
+
|
| 166 |
+
|
| 167 |
+
### STEP 6
|
| 168 |
+
# Call the preprocess_text function and store the result in a cleaned_chunks variable
|
| 169 |
+
cleaned_chunks = preprocess_text(financial_advice_text) # Complete this line
|
| 170 |
+
top_results = get_top_chunks("What financial advice you give me?", finance_embeddings, cleaned_finance)
|
| 171 |
+
|
| 172 |
+
|
| 173 |
+
#Defining chatbot giving user a UI to interact, see their conversation history, and see new messages using built in gr feature
|
| 174 |
+
#ChatInterface requires at least one parameter(a function)
|
| 175 |
+
chatbot = gr.ChatInterface(respond,type="messages", title="Finance Management Hub", theme="Taithrah/Minimal")
|
| 176 |
+
|
| 177 |
+
def save_chat_history(history, username):
|
| 178 |
+
if not username:
|
| 179 |
+
username = "anonymous"
|
| 180 |
+
|
| 181 |
+
timestamp = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
|
| 182 |
+
filename = f"chat_history_{username}_{timestamp}.txt"
|
| 183 |
+
|
| 184 |
+
with open(filename, "w", encoding="utf-8") as f:
|
| 185 |
+
f.write(f"Chat History for {username} - {timestamp}\n\n")
|
| 186 |
+
for exchange in history:
|
| 187 |
+
if isinstance(exchange, tuple) and len(exchange) == 2:
|
| 188 |
+
user_msg, bot_msg = exchange
|
| 189 |
+
f.write(f"User: {user_msg}\n")
|
| 190 |
+
f.write(f"Bot: {bot_msg}\n\n")
|
| 191 |
+
elif isinstance(exchange, dict):
|
| 192 |
+
# Handle dictionary format if needed
|
| 193 |
+
role = exchange.get("role", "unknown")
|
| 194 |
+
content = exchange.get("content", "")
|
| 195 |
+
f.write(f"{role.capitalize()}: {content}\n\n")
|
| 196 |
+
|
| 197 |
+
return filename
|
| 198 |
+
|
| 199 |
+
with gr.Blocks(
|
| 200 |
+
theme=gr.themes.Soft(
|
| 201 |
+
primary_hue="blue",
|
| 202 |
+
secondary_hue="fuchsia",
|
| 203 |
+
neutral_hue="gray",
|
| 204 |
+
text_size="lg",
|
| 205 |
+
|
| 206 |
+
).set(
|
| 207 |
+
background_fill_primary='*neutral_200',
|
| 208 |
+
background_fill_secondary='neutral_100',
|
| 209 |
+
background_fill_secondary_dark='secondary_500',
|
| 210 |
+
border_color_accent='*secondary_400',
|
| 211 |
+
border_color_accent_dark='*secondary_800',
|
| 212 |
+
color_accent='*secondary_600',
|
| 213 |
+
color_accent_soft='*secondary_200',
|
| 214 |
+
color_accent_soft_dark='*secondary_800',
|
| 215 |
+
button_primary_background_fill='*secondary_400',
|
| 216 |
+
button_primary_background_fill_dark='*secondary_600',
|
| 217 |
+
button_primary_text_color='white',
|
| 218 |
+
button_primary_border_color='*secondary_700',
|
| 219 |
+
button_primary_border_color_dark='*secondary_900'
|
| 220 |
+
)
|
| 221 |
+
) as demo:
|
| 222 |
+
with gr.Row(scale=1):
|
| 223 |
+
chatbot_topic=gr.CheckboxGroup(["Helping Charities", "Financial Aid"], label="What would you like advice about?")
|
| 224 |
+
with gr.Row(scale=1):
|
| 225 |
+
chatbot_mode=gr.CheckboxGroup(["General Advice", "Personal Advice"], label="How would you like the chatbot to respond?")
|
| 226 |
+
|
| 227 |
+
gr.ChatInterface(
|
| 228 |
+
fn=lambda msg, hist, topic_vals, mode_vals: respond(msg, hist, topic_vals, mode_vals),
|
| 229 |
+
title="Finance Management Hub",
|
| 230 |
+
description="Ask about your personal finance",
|
| 231 |
+
type="messages",
|
| 232 |
+
additional_inputs=[chatbot_topic, chatbot_mode]
|
| 233 |
+
)
|
| 234 |
+
#launching chatbot
|
| 235 |
+
demo.launch()
|