Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- complexnn.py +431 -0
- conv_stft.py +164 -0
complexnn.py
ADDED
@@ -0,0 +1,431 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
|
7 |
+
def get_casual_padding1d():
|
8 |
+
pass
|
9 |
+
|
10 |
+
|
11 |
+
def get_casual_padding2d():
|
12 |
+
pass
|
13 |
+
|
14 |
+
|
15 |
+
class cPReLU(nn.Module):
|
16 |
+
|
17 |
+
def __init__(self, complex_axis=1):
|
18 |
+
super(cPReLU, self).__init__()
|
19 |
+
self.r_prelu = nn.PReLU()
|
20 |
+
self.i_prelu = nn.PReLU()
|
21 |
+
self.complex_axis = complex_axis
|
22 |
+
|
23 |
+
def forward(self, inputs):
|
24 |
+
real, imag = torch.chunk(inputs, 2, self.complex_axis)
|
25 |
+
real = self.r_prelu(real)
|
26 |
+
imag = self.i_prelu(imag)
|
27 |
+
return torch.cat([real, imag], self.complex_axis)
|
28 |
+
|
29 |
+
|
30 |
+
class NavieComplexLSTM(nn.Module):
|
31 |
+
def __init__(self, input_size, hidden_size, projection_dim=None, bidirectional=False, batch_first=False):
|
32 |
+
super(NavieComplexLSTM, self).__init__()
|
33 |
+
|
34 |
+
self.input_dim = input_size // 2
|
35 |
+
self.rnn_units = hidden_size // 2
|
36 |
+
self.real_lstm = nn.LSTM(self.input_dim, self.rnn_units, num_layers=1, bidirectional=bidirectional,
|
37 |
+
batch_first=False)
|
38 |
+
self.imag_lstm = nn.LSTM(self.input_dim, self.rnn_units, num_layers=1, bidirectional=bidirectional,
|
39 |
+
batch_first=False)
|
40 |
+
if bidirectional:
|
41 |
+
bidirectional = 2
|
42 |
+
else:
|
43 |
+
bidirectional = 1
|
44 |
+
if projection_dim is not None:
|
45 |
+
self.projection_dim = projection_dim // 2
|
46 |
+
self.r_trans = nn.Linear(self.rnn_units * bidirectional, self.projection_dim)
|
47 |
+
self.i_trans = nn.Linear(self.rnn_units * bidirectional, self.projection_dim)
|
48 |
+
else:
|
49 |
+
self.projection_dim = None
|
50 |
+
|
51 |
+
def forward(self, inputs):
|
52 |
+
if isinstance(inputs, list):
|
53 |
+
real, imag = inputs
|
54 |
+
elif isinstance(inputs, torch.Tensor):
|
55 |
+
real, imag = torch.chunk(inputs, -1)
|
56 |
+
r2r_out = self.real_lstm(real)[0]
|
57 |
+
r2i_out = self.imag_lstm(real)[0]
|
58 |
+
i2r_out = self.real_lstm(imag)[0]
|
59 |
+
i2i_out = self.imag_lstm(imag)[0]
|
60 |
+
real_out = r2r_out - i2i_out
|
61 |
+
imag_out = i2r_out + r2i_out
|
62 |
+
if self.projection_dim is not None:
|
63 |
+
real_out = self.r_trans(real_out)
|
64 |
+
imag_out = self.i_trans(imag_out)
|
65 |
+
# print(real_out.shape,imag_out.shape)
|
66 |
+
return [real_out, imag_out]
|
67 |
+
|
68 |
+
def flatten_parameters(self):
|
69 |
+
self.imag_lstm.flatten_parameters()
|
70 |
+
self.real_lstm.flatten_parameters()
|
71 |
+
|
72 |
+
|
73 |
+
def complex_cat(inputs, axis):
|
74 |
+
real, imag = [], []
|
75 |
+
for idx, data in enumerate(inputs):
|
76 |
+
r, i = torch.chunk(data, 2, axis)
|
77 |
+
real.append(r)
|
78 |
+
imag.append(i)
|
79 |
+
real = torch.cat(real, axis)
|
80 |
+
imag = torch.cat(imag, axis)
|
81 |
+
outputs = torch.cat([real, imag], axis)
|
82 |
+
return outputs
|
83 |
+
|
84 |
+
|
85 |
+
class ComplexConv2d(nn.Module):
|
86 |
+
|
87 |
+
def __init__(
|
88 |
+
self,
|
89 |
+
in_channels,
|
90 |
+
out_channels,
|
91 |
+
kernel_size=(1, 1),
|
92 |
+
stride=(1, 1),
|
93 |
+
padding=(0, 0),
|
94 |
+
dilation=1,
|
95 |
+
groups=1,
|
96 |
+
causal=True,
|
97 |
+
complex_axis=1,
|
98 |
+
):
|
99 |
+
'''
|
100 |
+
in_channels: real+imag
|
101 |
+
out_channels: real+imag
|
102 |
+
kernel_size : input [B,C,D,T] kernel size in [D,T]
|
103 |
+
padding : input [B,C,D,T] padding in [D,T]
|
104 |
+
causal: if causal, will padding time dimension's left side,
|
105 |
+
otherwise both
|
106 |
+
|
107 |
+
'''
|
108 |
+
super(ComplexConv2d, self).__init__()
|
109 |
+
self.in_channels = in_channels // 2
|
110 |
+
self.out_channels = out_channels // 2
|
111 |
+
self.kernel_size = kernel_size
|
112 |
+
self.stride = stride
|
113 |
+
self.padding = padding
|
114 |
+
self.causal = causal
|
115 |
+
self.groups = groups
|
116 |
+
self.dilation = dilation
|
117 |
+
self.complex_axis = complex_axis
|
118 |
+
self.real_conv = nn.Conv2d(self.in_channels, self.out_channels, kernel_size, self.stride,
|
119 |
+
padding=[self.padding[0], 0], dilation=self.dilation, groups=self.groups)
|
120 |
+
self.imag_conv = nn.Conv2d(self.in_channels, self.out_channels, kernel_size, self.stride,
|
121 |
+
padding=[self.padding[0], 0], dilation=self.dilation, groups=self.groups)
|
122 |
+
|
123 |
+
nn.init.normal_(self.real_conv.weight.data, std=0.05)
|
124 |
+
nn.init.normal_(self.imag_conv.weight.data, std=0.05)
|
125 |
+
nn.init.constant_(self.real_conv.bias, 0.)
|
126 |
+
nn.init.constant_(self.imag_conv.bias, 0.)
|
127 |
+
|
128 |
+
def forward(self, inputs):
|
129 |
+
if self.padding[1] != 0 and self.causal:
|
130 |
+
inputs = F.pad(inputs, [self.padding[1], 0, 0, 0])
|
131 |
+
else:
|
132 |
+
inputs = F.pad(inputs, [self.padding[1], self.padding[1], 0, 0])
|
133 |
+
|
134 |
+
if self.complex_axis == 0:
|
135 |
+
real = self.real_conv(inputs)
|
136 |
+
imag = self.imag_conv(inputs)
|
137 |
+
real2real, imag2real = torch.chunk(real, 2, self.complex_axis)
|
138 |
+
real2imag, imag2imag = torch.chunk(imag, 2, self.complex_axis)
|
139 |
+
|
140 |
+
else:
|
141 |
+
if isinstance(inputs, torch.Tensor):
|
142 |
+
real, imag = torch.chunk(inputs, 2, self.complex_axis)
|
143 |
+
|
144 |
+
real2real = self.real_conv(real, )
|
145 |
+
imag2imag = self.imag_conv(imag, )
|
146 |
+
|
147 |
+
real2imag = self.imag_conv(real)
|
148 |
+
imag2real = self.real_conv(imag)
|
149 |
+
|
150 |
+
real = real2real - imag2imag
|
151 |
+
imag = real2imag + imag2real
|
152 |
+
out = torch.cat([real, imag], self.complex_axis)
|
153 |
+
|
154 |
+
return out
|
155 |
+
|
156 |
+
|
157 |
+
class ComplexConvTranspose2d(nn.Module):
|
158 |
+
|
159 |
+
def __init__(
|
160 |
+
self,
|
161 |
+
in_channels,
|
162 |
+
out_channels,
|
163 |
+
kernel_size=(1, 1),
|
164 |
+
stride=(1, 1),
|
165 |
+
padding=(0, 0),
|
166 |
+
output_padding=(0, 0),
|
167 |
+
causal=False,
|
168 |
+
complex_axis=1,
|
169 |
+
groups=1
|
170 |
+
):
|
171 |
+
'''
|
172 |
+
in_channels: real+imag
|
173 |
+
out_channels: real+imag
|
174 |
+
'''
|
175 |
+
super(ComplexConvTranspose2d, self).__init__()
|
176 |
+
self.in_channels = in_channels // 2
|
177 |
+
self.out_channels = out_channels // 2
|
178 |
+
self.kernel_size = kernel_size
|
179 |
+
self.stride = stride
|
180 |
+
self.padding = padding
|
181 |
+
self.output_padding = output_padding
|
182 |
+
self.groups = groups
|
183 |
+
|
184 |
+
self.real_conv = nn.ConvTranspose2d(self.in_channels, self.out_channels, kernel_size, self.stride,
|
185 |
+
padding=self.padding, output_padding=output_padding, groups=self.groups)
|
186 |
+
self.imag_conv = nn.ConvTranspose2d(self.in_channels, self.out_channels, kernel_size, self.stride,
|
187 |
+
padding=self.padding, output_padding=output_padding, groups=self.groups)
|
188 |
+
self.complex_axis = complex_axis
|
189 |
+
|
190 |
+
nn.init.normal_(self.real_conv.weight, std=0.05)
|
191 |
+
nn.init.normal_(self.imag_conv.weight, std=0.05)
|
192 |
+
nn.init.constant_(self.real_conv.bias, 0.)
|
193 |
+
nn.init.constant_(self.imag_conv.bias, 0.)
|
194 |
+
|
195 |
+
def forward(self, inputs):
|
196 |
+
|
197 |
+
if isinstance(inputs, torch.Tensor):
|
198 |
+
real, imag = torch.chunk(inputs, 2, self.complex_axis)
|
199 |
+
elif isinstance(inputs, tuple) or isinstance(inputs, list):
|
200 |
+
real = inputs[0]
|
201 |
+
imag = inputs[1]
|
202 |
+
if self.complex_axis == 0:
|
203 |
+
real = self.real_conv(inputs)
|
204 |
+
imag = self.imag_conv(inputs)
|
205 |
+
real2real, imag2real = torch.chunk(real, 2, self.complex_axis)
|
206 |
+
real2imag, imag2imag = torch.chunk(imag, 2, self.complex_axis)
|
207 |
+
|
208 |
+
else:
|
209 |
+
if isinstance(inputs, torch.Tensor):
|
210 |
+
real, imag = torch.chunk(inputs, 2, self.complex_axis)
|
211 |
+
|
212 |
+
real2real = self.real_conv(real, )
|
213 |
+
imag2imag = self.imag_conv(imag, )
|
214 |
+
|
215 |
+
real2imag = self.imag_conv(real)
|
216 |
+
imag2real = self.real_conv(imag)
|
217 |
+
|
218 |
+
real = real2real - imag2imag
|
219 |
+
imag = real2imag + imag2real
|
220 |
+
out = torch.cat([real, imag], self.complex_axis)
|
221 |
+
|
222 |
+
return out
|
223 |
+
|
224 |
+
|
225 |
+
# Source: https://github.com/ChihebTrabelsi/deep_complex_networks/tree/pytorch
|
226 |
+
# from https://github.com/IMLHF/SE_DCUNet/blob/f28bf1661121c8901ad38149ea827693f1830715/models/layers/complexnn.py#L55
|
227 |
+
|
228 |
+
class ComplexBatchNorm(torch.nn.Module):
|
229 |
+
def __init__(self, num_features, eps=1e-5, momentum=0.1, affine=True,
|
230 |
+
track_running_stats=True, complex_axis=1):
|
231 |
+
super(ComplexBatchNorm, self).__init__()
|
232 |
+
self.num_features = num_features // 2
|
233 |
+
self.eps = eps
|
234 |
+
self.momentum = momentum
|
235 |
+
self.affine = affine
|
236 |
+
self.track_running_stats = track_running_stats
|
237 |
+
|
238 |
+
self.complex_axis = complex_axis
|
239 |
+
|
240 |
+
if self.affine:
|
241 |
+
self.Wrr = torch.nn.Parameter(torch.Tensor(self.num_features))
|
242 |
+
self.Wri = torch.nn.Parameter(torch.Tensor(self.num_features))
|
243 |
+
self.Wii = torch.nn.Parameter(torch.Tensor(self.num_features))
|
244 |
+
self.Br = torch.nn.Parameter(torch.Tensor(self.num_features))
|
245 |
+
self.Bi = torch.nn.Parameter(torch.Tensor(self.num_features))
|
246 |
+
else:
|
247 |
+
self.register_parameter('Wrr', None)
|
248 |
+
self.register_parameter('Wri', None)
|
249 |
+
self.register_parameter('Wii', None)
|
250 |
+
self.register_parameter('Br', None)
|
251 |
+
self.register_parameter('Bi', None)
|
252 |
+
|
253 |
+
if self.track_running_stats:
|
254 |
+
self.register_buffer('RMr', torch.zeros(self.num_features))
|
255 |
+
self.register_buffer('RMi', torch.zeros(self.num_features))
|
256 |
+
self.register_buffer('RVrr', torch.ones(self.num_features))
|
257 |
+
self.register_buffer('RVri', torch.zeros(self.num_features))
|
258 |
+
self.register_buffer('RVii', torch.ones(self.num_features))
|
259 |
+
self.register_buffer('num_batches_tracked', torch.tensor(0, dtype=torch.long))
|
260 |
+
else:
|
261 |
+
self.register_parameter('RMr', None)
|
262 |
+
self.register_parameter('RMi', None)
|
263 |
+
self.register_parameter('RVrr', None)
|
264 |
+
self.register_parameter('RVri', None)
|
265 |
+
self.register_parameter('RVii', None)
|
266 |
+
self.register_parameter('num_batches_tracked', None)
|
267 |
+
self.reset_parameters()
|
268 |
+
|
269 |
+
def reset_running_stats(self):
|
270 |
+
if self.track_running_stats:
|
271 |
+
self.RMr.zero_()
|
272 |
+
self.RMi.zero_()
|
273 |
+
self.RVrr.fill_(1)
|
274 |
+
self.RVri.zero_()
|
275 |
+
self.RVii.fill_(1)
|
276 |
+
self.num_batches_tracked.zero_()
|
277 |
+
|
278 |
+
def reset_parameters(self):
|
279 |
+
self.reset_running_stats()
|
280 |
+
if self.affine:
|
281 |
+
self.Br.data.zero_()
|
282 |
+
self.Bi.data.zero_()
|
283 |
+
self.Wrr.data.fill_(1)
|
284 |
+
self.Wri.data.uniform_(-.9, +.9) # W will be positive-definite
|
285 |
+
self.Wii.data.fill_(1)
|
286 |
+
|
287 |
+
def _check_input_dim(self, xr, xi):
|
288 |
+
assert (xr.shape == xi.shape)
|
289 |
+
assert (xr.size(1) == self.num_features)
|
290 |
+
|
291 |
+
def forward(self, inputs):
|
292 |
+
# self._check_input_dim(xr, xi)
|
293 |
+
|
294 |
+
xr, xi = torch.chunk(inputs, 2, axis=self.complex_axis)
|
295 |
+
exponential_average_factor = 0.0
|
296 |
+
|
297 |
+
if self.training and self.track_running_stats:
|
298 |
+
self.num_batches_tracked += 1
|
299 |
+
if self.momentum is None: # use cumulative moving average
|
300 |
+
exponential_average_factor = 1.0 / self.num_batches_tracked.item()
|
301 |
+
else: # use exponential moving average
|
302 |
+
exponential_average_factor = self.momentum
|
303 |
+
|
304 |
+
#
|
305 |
+
# NOTE: The precise meaning of the "training flag" is:
|
306 |
+
# True: Normalize using batch statistics, update running statistics
|
307 |
+
# if they are being collected.
|
308 |
+
# False: Normalize using running statistics, ignore batch statistics.
|
309 |
+
#
|
310 |
+
training = self.training or not self.track_running_stats
|
311 |
+
redux = [i for i in reversed(range(xr.dim())) if i != 1]
|
312 |
+
vdim = [1] * xr.dim()
|
313 |
+
vdim[1] = xr.size(1)
|
314 |
+
|
315 |
+
#
|
316 |
+
# Mean M Computation and Centering
|
317 |
+
#
|
318 |
+
# Includes running mean update if training and running.
|
319 |
+
#
|
320 |
+
if training:
|
321 |
+
Mr, Mi = xr, xi
|
322 |
+
for d in redux:
|
323 |
+
Mr = Mr.mean(d, keepdim=True)
|
324 |
+
Mi = Mi.mean(d, keepdim=True)
|
325 |
+
if self.track_running_stats:
|
326 |
+
self.RMr.lerp_(Mr.squeeze(), exponential_average_factor)
|
327 |
+
self.RMi.lerp_(Mi.squeeze(), exponential_average_factor)
|
328 |
+
else:
|
329 |
+
Mr = self.RMr.view(vdim)
|
330 |
+
Mi = self.RMi.view(vdim)
|
331 |
+
xr, xi = xr - Mr, xi - Mi
|
332 |
+
|
333 |
+
#
|
334 |
+
# Variance Matrix V Computation
|
335 |
+
#
|
336 |
+
# Includes epsilon numerical stabilizer/Tikhonov regularizer.
|
337 |
+
# Includes running variance update if training and running.
|
338 |
+
#
|
339 |
+
if training:
|
340 |
+
Vrr = xr * xr
|
341 |
+
Vri = xr * xi
|
342 |
+
Vii = xi * xi
|
343 |
+
for d in redux:
|
344 |
+
Vrr = Vrr.mean(d, keepdim=True)
|
345 |
+
Vri = Vri.mean(d, keepdim=True)
|
346 |
+
Vii = Vii.mean(d, keepdim=True)
|
347 |
+
if self.track_running_stats:
|
348 |
+
self.RVrr.lerp_(Vrr.squeeze(), exponential_average_factor)
|
349 |
+
self.RVri.lerp_(Vri.squeeze(), exponential_average_factor)
|
350 |
+
self.RVii.lerp_(Vii.squeeze(), exponential_average_factor)
|
351 |
+
else:
|
352 |
+
Vrr = self.RVrr.view(vdim)
|
353 |
+
Vri = self.RVri.view(vdim)
|
354 |
+
Vii = self.RVii.view(vdim)
|
355 |
+
Vrr = Vrr + self.eps
|
356 |
+
Vri = Vri
|
357 |
+
Vii = Vii + self.eps
|
358 |
+
|
359 |
+
#
|
360 |
+
# Matrix Inverse Square Root U = V^-0.5
|
361 |
+
#
|
362 |
+
# sqrt of a 2x2 matrix,
|
363 |
+
# - https://en.wikipedia.org/wiki/Square_root_of_a_2_by_2_matrix
|
364 |
+
tau = Vrr + Vii
|
365 |
+
delta = torch.addcmul(Vrr * Vii, -1, Vri, Vri)
|
366 |
+
s = delta.sqrt()
|
367 |
+
t = (tau + 2 * s).sqrt()
|
368 |
+
|
369 |
+
# matrix inverse, http://mathworld.wolfram.com/MatrixInverse.html
|
370 |
+
rst = (s * t).reciprocal()
|
371 |
+
Urr = (s + Vii) * rst
|
372 |
+
Uii = (s + Vrr) * rst
|
373 |
+
Uri = (- Vri) * rst
|
374 |
+
|
375 |
+
#
|
376 |
+
# Optionally left-multiply U by affine weights W to produce combined
|
377 |
+
# weights Z, left-multiply the inputs by Z, then optionally bias them.
|
378 |
+
#
|
379 |
+
# y = Zx + B
|
380 |
+
# y = WUx + B
|
381 |
+
# y = [Wrr Wri][Urr Uri] [xr] + [Br]
|
382 |
+
# [Wir Wii][Uir Uii] [xi] [Bi]
|
383 |
+
#
|
384 |
+
if self.affine:
|
385 |
+
Wrr, Wri, Wii = self.Wrr.view(vdim), self.Wri.view(vdim), self.Wii.view(vdim)
|
386 |
+
Zrr = (Wrr * Urr) + (Wri * Uri)
|
387 |
+
Zri = (Wrr * Uri) + (Wri * Uii)
|
388 |
+
Zir = (Wri * Urr) + (Wii * Uri)
|
389 |
+
Zii = (Wri * Uri) + (Wii * Uii)
|
390 |
+
else:
|
391 |
+
Zrr, Zri, Zir, Zii = Urr, Uri, Uri, Uii
|
392 |
+
|
393 |
+
yr = (Zrr * xr) + (Zri * xi)
|
394 |
+
yi = (Zir * xr) + (Zii * xi)
|
395 |
+
|
396 |
+
if self.affine:
|
397 |
+
yr = yr + self.Br.view(vdim)
|
398 |
+
yi = yi + self.Bi.view(vdim)
|
399 |
+
|
400 |
+
outputs = torch.cat([yr, yi], self.complex_axis)
|
401 |
+
return outputs
|
402 |
+
|
403 |
+
def extra_repr(self):
|
404 |
+
return '{num_features}, eps={eps}, momentum={momentum}, affine={affine}, ' \
|
405 |
+
'track_running_stats={track_running_stats}'.format(**self.__dict__)
|
406 |
+
|
407 |
+
|
408 |
+
def complex_cat(inputs, axis):
|
409 |
+
real, imag = [], []
|
410 |
+
for idx, data in enumerate(inputs):
|
411 |
+
r, i = torch.chunk(data, 2, axis)
|
412 |
+
real.append(r)
|
413 |
+
imag.append(i)
|
414 |
+
real = torch.cat(real, axis)
|
415 |
+
imag = torch.cat(imag, axis)
|
416 |
+
outputs = torch.cat([real, imag], axis)
|
417 |
+
return outputs
|
418 |
+
|
419 |
+
|
420 |
+
if __name__ == '__main__':
|
421 |
+
import dc_crn7
|
422 |
+
|
423 |
+
torch.manual_seed(20)
|
424 |
+
onet1 = dc_crn7.ComplexConv2d(12, 12, kernel_size=(3, 2), padding=(2, 1))
|
425 |
+
onet2 = dc_crn7.ComplexConvTranspose2d(12, 12, kernel_size=(3, 2), padding=(2, 1))
|
426 |
+
inputs = torch.randn([1, 12, 12, 10])
|
427 |
+
# print(onet1.real_kernel[0,0,0,0])
|
428 |
+
nnet1 = ComplexConv2d(12, 12, kernel_size=(3, 2), padding=(2, 1), causal=True)
|
429 |
+
# print(nnet1.real_conv.weight[0,0,0,0])
|
430 |
+
nnet2 = ComplexConvTranspose2d(12, 12, kernel_size=(3, 2), padding=(2, 1))
|
431 |
+
print(torch.mean(nnet1(inputs) - onet1(inputs)))
|
conv_stft.py
ADDED
@@ -0,0 +1,164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import numpy as np
|
4 |
+
import torch.nn.functional as F
|
5 |
+
from scipy.signal import get_window
|
6 |
+
|
7 |
+
|
8 |
+
def init_kernels(win_len, win_inc, fft_len, win_type=None, invers=False):
|
9 |
+
if win_type == 'None' or win_type is None:
|
10 |
+
window = np.ones(win_len)
|
11 |
+
else:
|
12 |
+
window = get_window(win_type, win_len, fftbins=True) # **0.5
|
13 |
+
|
14 |
+
N = fft_len
|
15 |
+
fourier_basis = np.fft.rfft(np.eye(N))[:win_len]
|
16 |
+
real_kernel = np.real(fourier_basis)
|
17 |
+
imag_kernel = np.imag(fourier_basis)
|
18 |
+
kernel = np.concatenate([real_kernel, imag_kernel], 1).T
|
19 |
+
|
20 |
+
if invers:
|
21 |
+
kernel = np.linalg.pinv(kernel).T
|
22 |
+
|
23 |
+
kernel = kernel * window
|
24 |
+
kernel = kernel[:, None, :]
|
25 |
+
return torch.from_numpy(kernel.astype(np.float32)), torch.from_numpy(window[None, :, None].astype(np.float32))
|
26 |
+
|
27 |
+
|
28 |
+
class ConvSTFT(nn.Module):
|
29 |
+
|
30 |
+
def __init__(self, win_len, win_inc, fft_len=None, win_type='hamming', feature_type='real', fix=True):
|
31 |
+
super(ConvSTFT, self).__init__()
|
32 |
+
|
33 |
+
if fft_len == None:
|
34 |
+
self.fft_len = np.int(2 ** np.ceil(np.log2(win_len)))
|
35 |
+
else:
|
36 |
+
self.fft_len = fft_len
|
37 |
+
|
38 |
+
kernel, _ = init_kernels(win_len, win_inc, self.fft_len, win_type)
|
39 |
+
# self.weight = nn.Parameter(kernel, requires_grad=(not fix))
|
40 |
+
self.register_buffer('weight', kernel)
|
41 |
+
self.feature_type = feature_type
|
42 |
+
self.stride = win_inc
|
43 |
+
self.win_len = win_len
|
44 |
+
self.dim = self.fft_len
|
45 |
+
|
46 |
+
def forward(self, inputs):
|
47 |
+
if inputs.dim() == 2:
|
48 |
+
inputs = torch.unsqueeze(inputs, 1)
|
49 |
+
inputs = F.pad(inputs, [self.win_len - self.stride, self.win_len - self.stride])
|
50 |
+
outputs = F.conv1d(inputs, self.weight, stride=self.stride)
|
51 |
+
|
52 |
+
if self.feature_type == 'complex':
|
53 |
+
return outputs
|
54 |
+
else:
|
55 |
+
dim = self.dim // 2 + 1
|
56 |
+
real = outputs[:, :dim, :]
|
57 |
+
imag = outputs[:, dim:, :]
|
58 |
+
mags = torch.sqrt(real ** 2 + imag ** 2)
|
59 |
+
phase = torch.atan2(imag, real)
|
60 |
+
return mags, phase
|
61 |
+
|
62 |
+
|
63 |
+
class ConviSTFT(nn.Module):
|
64 |
+
|
65 |
+
def __init__(self, win_len, win_inc, fft_len=None, win_type='hamming', feature_type='real', fix=True):
|
66 |
+
super(ConviSTFT, self).__init__()
|
67 |
+
if fft_len == None:
|
68 |
+
self.fft_len = np.int(2 ** np.ceil(np.log2(win_len)))
|
69 |
+
else:
|
70 |
+
self.fft_len = fft_len
|
71 |
+
kernel, window = init_kernels(win_len, win_inc, self.fft_len, win_type, invers=True)
|
72 |
+
# self.weight = nn.Parameter(kernel, requires_grad=(not fix))
|
73 |
+
self.register_buffer('weight', kernel)
|
74 |
+
self.feature_type = feature_type
|
75 |
+
self.win_type = win_type
|
76 |
+
self.win_len = win_len
|
77 |
+
self.stride = win_inc
|
78 |
+
self.stride = win_inc
|
79 |
+
self.dim = self.fft_len
|
80 |
+
self.register_buffer('window', window)
|
81 |
+
self.register_buffer('enframe', torch.eye(win_len)[:, None, :])
|
82 |
+
|
83 |
+
def forward(self, inputs, phase=None):
|
84 |
+
"""
|
85 |
+
inputs : [B, N+2, T] (complex spec) or [B, N//2+1, T] (mags)
|
86 |
+
phase: [B, N//2+1, T] (if not none)
|
87 |
+
"""
|
88 |
+
|
89 |
+
if phase is not None:
|
90 |
+
real = inputs * torch.cos(phase)
|
91 |
+
imag = inputs * torch.sin(phase)
|
92 |
+
inputs = torch.cat([real, imag], 1)
|
93 |
+
outputs = F.conv_transpose1d(inputs, self.weight, stride=self.stride)
|
94 |
+
|
95 |
+
# this is from torch-stft: https://github.com/pseeth/torch-stft
|
96 |
+
t = self.window.repeat(1, 1, inputs.size(-1)) ** 2
|
97 |
+
coff = F.conv_transpose1d(t, self.enframe, stride=self.stride)
|
98 |
+
outputs = outputs / (coff + 1e-8)
|
99 |
+
# outputs = torch.where(coff == 0, outputs, outputs/coff)
|
100 |
+
outputs = outputs[..., self.win_len - self.stride:-(self.win_len - self.stride)]
|
101 |
+
|
102 |
+
return outputs
|
103 |
+
|
104 |
+
|
105 |
+
def test_fft():
|
106 |
+
torch.manual_seed(20)
|
107 |
+
win_len = 320
|
108 |
+
win_inc = 160
|
109 |
+
fft_len = 512
|
110 |
+
inputs = torch.randn([1, 1, 16000 * 4])
|
111 |
+
fft = ConvSTFT(win_len, win_inc, fft_len, win_type='hanning', feature_type='real')
|
112 |
+
import librosa
|
113 |
+
|
114 |
+
outputs1 = fft(inputs)[0]
|
115 |
+
outputs1 = outputs1.numpy()[0]
|
116 |
+
np_inputs = inputs.numpy().reshape([-1])
|
117 |
+
librosa_stft = librosa.stft(np_inputs, win_length=win_len, n_fft=fft_len, hop_length=win_inc, center=False)
|
118 |
+
print(np.mean((outputs1 - np.abs(librosa_stft)) ** 2))
|
119 |
+
|
120 |
+
|
121 |
+
def test_ifft1():
|
122 |
+
import soundfile as sf
|
123 |
+
N = 400
|
124 |
+
inc = 100
|
125 |
+
fft_len = 512
|
126 |
+
torch.manual_seed(N)
|
127 |
+
data = np.random.randn(16000 * 8)[None, None, :]
|
128 |
+
# data = sf.read('../ori.wav')[0]
|
129 |
+
inputs = data.reshape([1, 1, -1])
|
130 |
+
fft = ConvSTFT(N, inc, fft_len=fft_len, win_type='hanning', feature_type='complex')
|
131 |
+
ifft = ConviSTFT(N, inc, fft_len=fft_len, win_type='hanning', feature_type='complex')
|
132 |
+
inputs = torch.from_numpy(inputs.astype(np.float32))
|
133 |
+
outputs1 = fft(inputs)
|
134 |
+
print(outputs1.shape)
|
135 |
+
outputs2 = ifft(outputs1)
|
136 |
+
sf.write('conv_stft.wav', outputs2.numpy()[0, 0, :], 16000)
|
137 |
+
print('wav MSE', torch.mean(torch.abs(inputs[..., :outputs2.size(2)] - outputs2) ** 2))
|
138 |
+
|
139 |
+
|
140 |
+
def test_ifft2():
|
141 |
+
N = 400
|
142 |
+
inc = 100
|
143 |
+
fft_len = 512
|
144 |
+
np.random.seed(20)
|
145 |
+
torch.manual_seed(20)
|
146 |
+
t = np.random.randn(16000 * 4) * 0.001
|
147 |
+
t = np.clip(t, -1, 1)
|
148 |
+
# input = torch.randn([1,16000*4])
|
149 |
+
input = torch.from_numpy(t[None, None, :].astype(np.float32))
|
150 |
+
|
151 |
+
fft = ConvSTFT(N, inc, fft_len=fft_len, win_type='hanning', feature_type='complex')
|
152 |
+
ifft = ConviSTFT(N, inc, fft_len=fft_len, win_type='hanning', feature_type='complex')
|
153 |
+
|
154 |
+
out1 = fft(input)
|
155 |
+
output = ifft(out1)
|
156 |
+
print('random MSE', torch.mean(torch.abs(input - output) ** 2))
|
157 |
+
import soundfile as sf
|
158 |
+
sf.write('zero.wav', output[0, 0].numpy(), 16000)
|
159 |
+
|
160 |
+
|
161 |
+
if __name__ == '__main__':
|
162 |
+
# test_fft()
|
163 |
+
test_ifft1()
|
164 |
+
# test_ifft2()
|