light-mixing / app.py
sgbaird's picture
split singleton (major fix!), use form, add experiment_id checking, min upper y bound, better messages
9d57020
raw
history blame
7.86 kB
import json
import queue
import paho.mqtt.client as mqtt
import streamlit as st
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.patches import Rectangle
import secrets
from time import time
# Initialize Streamlit app
st.title("Light-mixing Control Panel")
# Description and context
st.markdown(
"""
This application accesses a public test demo located in Toronto, ON, Canada (as of 2024-07-27).
For more context, you can refer to this [Colab notebook](https://colab.research.google.com/github/sparks-baird/self-driving-lab-demo/blob/main/notebooks/4.2-paho-mqtt-colab-sdl-demo-test.ipynb)
and the [self-driving-lab-demo project](https://github.com/sparks-baird/self-driving-lab-demo).
You may also be interested in the Acceleration Consortium's ["Hello World" microcourse](https://ac-microcourses.readthedocs.io/en/latest/courses/hello-world/index.html) for self-driving labs.
"""
)
max_power = 0.35
max_value = round(max_power * 255)
with st.form("mqtt_form"):
# MQTT Configuration
HIVEMQ_HOST = st.text_input(
"Enter your HiveMQ host:",
"248cc294c37642359297f75b7b023374.s2.eu.hivemq.cloud",
type="password",
)
HIVEMQ_USERNAME = st.text_input("Enter your HiveMQ username:", "sgbaird")
HIVEMQ_PASSWORD = st.text_input(
"Enter your HiveMQ password:", "D.Pq5gYtejYbU#L", type="password"
)
PORT = st.number_input(
"Enter the port number:", min_value=1, max_value=65535, value=8883
)
# User input for the Pico ID
PICO_ID = st.text_input("Enter your Pico ID:", "test", type="password")
# Information about the maximum power reduction
st.info(
f"The upper limit for RGB power levels has been set to {max_value} instead of 255. NeoPixels are bright 😎"
)
# Sliders for RGB values
R = st.slider("Select the Red value:", min_value=0, max_value=max_value, value=0)
G = st.slider("Select the Green value:", min_value=0, max_value=max_value, value=0)
B = st.slider("Select the Blue value:", min_value=0, max_value=max_value, value=0)
submit_button = st.form_submit_button(label="Send RGB Command")
command_topic = f"sdl-demo/picow/{PICO_ID}/GPIO/28/"
sensor_data_topic = f"sdl-demo/picow/{PICO_ID}/as7341/"
# random session id to keep track of the session and filter out old data
experiment_id = secrets.token_hex(4) # 4 bytes = 8 characters
sensor_data_file = f"sensor_data-{experiment_id}.json"
# TODO: Session ID using st.session_state to have history of commands and sensor data
sensor_data_queue = queue.Queue()
# Singleton: https://docs.streamlit.io/develop/api-reference/caching-and-state/st.cache_resource
@st.cache_resource
def create_paho_client(tls=True):
client = mqtt.Client(mqtt.CallbackAPIVersion.VERSION2, protocol=mqtt.MQTTv5)
if tls:
client.tls_set(tls_version=mqtt.ssl.PROTOCOL_TLS_CLIENT)
return client
# Define setup separately since sensor_data is dynamic
def setup_paho_client(
client, sensor_data_topic, hostname, username, password=None, port=8883
):
def on_message(client, userdata, msg):
sensor_data_queue.put(json.loads(msg.payload))
def on_connect(client, userdata, flags, rc, properties=None):
if rc != 0:
print("Connected with result code " + str(rc))
client.subscribe(sensor_data_topic, qos=1)
client.on_connect = on_connect
client.on_message = on_message
client.username_pw_set(username, password)
client.connect(hostname, port)
client.loop_start() # Use a non-blocking loop
return client
def send_command(client, command_topic, msg):
print("Sending command...")
result = client.publish(command_topic, json.dumps(msg), qos=2)
result.wait_for_publish() # Ensure the message is sent
if result.rc == mqtt.MQTT_ERR_SUCCESS:
print(f"Command sent: {msg} to topic {command_topic}")
else:
print(f"Failed to send command: {result.rc}")
# Helper function to plot discrete spectral sensor data
def plot_spectra(sensor_data):
"""https://chatgpt.com/share/210d2fee-ca64-45a5-866e-e6df6e56bd1c"""
wavelengths = np.array([410, 440, 470, 510, 550, 583, 620, 670])
intensities = np.array(
[
sensor_data["ch410"],
sensor_data["ch440"],
sensor_data["ch470"],
sensor_data["ch510"],
sensor_data["ch550"],
sensor_data["ch583"],
sensor_data["ch620"],
sensor_data["ch670"],
]
)
fig, ax = plt.subplots(figsize=(10, 6))
num_points = 100 # for "fake" color bar effect
# Adding rectangles for color bar effect
dense_wavelengths = np.linspace(wavelengths.min(), wavelengths.max(), num_points)
# rect_height = max(intensities) * 0.02 # Height of the rectangles
rect_height = 300
for dw in dense_wavelengths:
rect = Rectangle(
(
dw - (wavelengths.max() - wavelengths.min()) / num_points / 2,
-rect_height * 2,
),
(wavelengths.max() - wavelengths.min()) / num_points,
rect_height * 3,
color=plt.cm.rainbow(
(dw - wavelengths.min()) / (wavelengths.max() - wavelengths.min())
),
edgecolor="none",
)
ax.add_patch(rect)
# Main scatter plot
scatter = ax.scatter(
wavelengths, intensities, c=wavelengths, cmap="rainbow", edgecolor="k"
)
# Adding vertical lines from the x-axis to each point
for wavelength, intensity in zip(wavelengths, intensities):
ax.vlines(wavelength, 0, intensity, color="gray", linestyle="--", linewidth=1)
# Adjust limits and labels with larger font size
ax.set_xlim(wavelengths.min() - 10, wavelengths.max() + 10)
ax.set_ylim(
0, max(30000, max(intensities) + 15)
) # Ensure the lower y limit is 0 and add buffer with a minimum upper limit of 30000
ax.set_xticks(wavelengths)
ax.set_xlabel("Wavelength (nm)", fontsize=14)
ax.set_ylabel("Intensity", fontsize=14)
ax.set_title("Spectral Intensity vs. Wavelength", fontsize=16)
ax.tick_params(axis="both", which="major", labelsize=12)
st.pyplot(fig)
# Publish button
if submit_button:
if not PICO_ID or not HIVEMQ_HOST or not HIVEMQ_USERNAME or not HIVEMQ_PASSWORD:
st.error("Please enter all required fields.")
else:
st.info(
f"Please wait while the command {R, G, B} for experiment {experiment_id} is sent..."
)
client = create_paho_client(tls=True)
client = setup_paho_client(
client,
sensor_data_topic,
HIVEMQ_HOST,
HIVEMQ_USERNAME,
password=HIVEMQ_PASSWORD,
port=int(PORT),
)
command_msg = {"R": R, "G": G, "B": B, "_experiment_id": experiment_id}
session_timeout = time() + 60
send_command(client, command_topic, command_msg)
while True and time() < session_timeout:
sensor_data = sensor_data_queue.get(True, timeout=15)
input_message = sensor_data["_input_message"]
received_experiment_id = input_message["_experiment_id"]
if sensor_data and received_experiment_id == experiment_id:
R1 = input_message["R"]
G1 = input_message["G"]
B1 = input_message["B"]
st.success(
f"Command {R1, G1, B1} for experiment {experiment_id} sent successfully!"
)
plot_spectra(sensor_data)
st.write("Sensor Data Received:", sensor_data)
break
else:
st.warning(
f"Received data for experiment {received_experiment_id} instead of {experiment_id}. Retrying..."
)