light-mixing / app.py
sgbaird's picture
chore: Update RGB control panel with Streamlit and MQTT implementation
95cf42c
raw
history blame
7.26 kB
import json
import queue
import paho.mqtt.client as mqtt
import streamlit as st
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.patches import Rectangle
# Initialize Streamlit app
st.title("Light-mixing Control Panel")
# Description and context
st.markdown(
"""
This application accesses a public test demo located in Toronto, ON, Canada (as of 2024-07-27).
For more context, you can refer to this [Colab notebook](https://colab.research.google.com/github/sparks-baird/self-driving-lab-demo/blob/main/notebooks/4.2-paho-mqtt-colab-sdl-demo-test.ipynb)
and the [self-driving-lab-demo project](https://github.com/sparks-baird/self-driving-lab-demo).
You may also be interested in the Acceleration Consortium's ["Hello World" microcourse](https://ac-microcourses.readthedocs.io/en/latest/courses/hello-world/index.html) for self-driving labs.
"""
)
# MQTT Configuration
HIVEMQ_HOST = st.text_input(
"Enter your HiveMQ host:",
"248cc294c37642359297f75b7b023374.s2.eu.hivemq.cloud",
type="password",
)
HIVEMQ_USERNAME = st.text_input("Enter your HiveMQ username:", "sgbaird")
HIVEMQ_PASSWORD = st.text_input(
"Enter your HiveMQ password:", "D.Pq5gYtejYbU#L", type="password"
)
PORT = st.number_input(
"Enter the port number:", min_value=1, max_value=65535, value=8883
)
# User input for the Pico ID
PICO_ID = st.text_input("Enter your Pico ID:", "test", type="password")
command_topic = f"sdl-demo/picow/{PICO_ID}/GPIO/28/"
sensor_data_topic = f"sdl-demo/picow/{PICO_ID}/as7341/"
max_power = 0.35
max_value = round(max_power * 255)
# Information about the maximum power reduction
st.info(
f"The upper limit for RGB power levels has been set to {max_value} instead of 255. NeoPixels are bright 😎"
)
# Sliders for RGB values
R = st.slider("Select the Red value:", min_value=0, max_value=max_value, value=0)
G = st.slider("Select the Green value:", min_value=0, max_value=max_value, value=0)
B = st.slider("Select the Blue value:", min_value=0, max_value=max_value, value=0)
# # Initialize session state for messages and lock state
if "messages" not in st.session_state:
st.session_state.messages = []
# if "locked" not in st.session_state:
# st.session_state.locked = False
# if "command_history" not in st.session_state:
# st.session_state.command_history = []
# if "sensor_data_history" not in st.session_state:
# st.session_state.sensor_data_history = []
# Queue to hold sensor data
sensor_data_queue = queue.Queue()
# Singleton: https://docs.streamlit.io/develop/api-reference/caching-and-state/st.cache_resource
@st.cache_resource
def get_paho_client(
sensor_data_topic, hostname, username, password=None, port=8883, tls=True
):
client = mqtt.Client(
mqtt.CallbackAPIVersion.VERSION2, protocol=mqtt.MQTTv5
) # create new instance
def on_message(client, userdata, msg):
sensor_data_queue.put(json.loads(msg.payload))
def on_connect(client, userdata, flags, rc, properties=None):
if rc != 0:
print("Connected with result code " + str(rc))
client.subscribe(sensor_data_topic, qos=1)
client.on_connect = on_connect
client.on_message = on_message
if tls:
client.tls_set(tls_version=mqtt.ssl.PROTOCOL_TLS_CLIENT)
client.username_pw_set(username, password)
client.connect(hostname, port)
client.loop_start() # Use a non-blocking loop
return client
def send_and_receive(client, command_topic, msg, queue_timeout=60):
print("Sending command...")
result = client.publish(command_topic, json.dumps(msg), qos=2)
result.wait_for_publish() # Ensure the message is sent
if result.rc == mqtt.MQTT_ERR_SUCCESS:
print(f"Command sent: {msg} to topic {command_topic}")
else:
print(f"Failed to send command: {result.rc}")
try:
sensor_data = sensor_data_queue.get(True, queue_timeout)
return sensor_data
except queue.Empty:
st.error("No sensor data received within the timeout period.")
return None
# Helper function to plot discrete spectral sensor data
def plot_spectra(sensor_data):
"""https://chatgpt.com/share/210d2fee-ca64-45a5-866e-e6df6e56bd1c"""
wavelengths = np.array([410, 440, 470, 510, 550, 583, 620, 670])
intensities = np.array(
[
sensor_data["ch410"],
sensor_data["ch440"],
sensor_data["ch470"],
sensor_data["ch510"],
sensor_data["ch550"],
sensor_data["ch583"],
sensor_data["ch620"],
sensor_data["ch670"],
]
)
fig, ax = plt.subplots(figsize=(10, 6))
num_points = 100 # for "fake" color bar effect
# Adding rectangles for color bar effect
dense_wavelengths = np.linspace(wavelengths.min(), wavelengths.max(), num_points)
rect_height = max(intensities) * 0.02 # Height of the rectangles
for dw in dense_wavelengths:
rect = Rectangle(
(
dw - (wavelengths.max() - wavelengths.min()) / num_points / 2,
-rect_height * 2,
),
(wavelengths.max() - wavelengths.min()) / num_points,
rect_height * 3,
color=plt.cm.rainbow(
(dw - wavelengths.min()) / (wavelengths.max() - wavelengths.min())
),
edgecolor="none",
)
ax.add_patch(rect)
# Main scatter plot
scatter = ax.scatter(
wavelengths, intensities, c=wavelengths, cmap="rainbow", edgecolor="k"
)
# Adding vertical lines from the x-axis to each point
for wavelength, intensity in zip(wavelengths, intensities):
ax.vlines(wavelength, 0, intensity, color="gray", linestyle="--", linewidth=1)
# Adjust limits and labels with larger font size
ax.set_xlim(wavelengths.min() - 10, wavelengths.max() + 10)
ax.set_ylim(
0, max(intensities) + 15
) # Ensure the lower y limit is 0 and add buffer
ax.set_xticks(wavelengths)
ax.set_xlabel("Wavelength (nm)", fontsize=14)
ax.set_ylabel("Intensity", fontsize=14)
ax.set_title("Spectral Intensity vs. Wavelength", fontsize=16)
ax.tick_params(axis="both", which="major", labelsize=12)
st.pyplot(fig)
# Publish button
# if st.button("Send RGB Command", disabled=st.session_state.locked):
if st.button("Send RGB Command"):
if not PICO_ID or not HIVEMQ_HOST or not HIVEMQ_USERNAME or not HIVEMQ_PASSWORD:
st.error("Please enter all required fields.")
else:
# st.session_state.locked = True
st.info("Please wait while the command is sent...")
client = get_paho_client(
sensor_data_topic,
HIVEMQ_HOST,
HIVEMQ_USERNAME,
password=HIVEMQ_PASSWORD,
port=int(PORT),
tls=True,
)
command_msg = {"R": R, "G": G, "B": B}
sensor_data = send_and_receive(
client, command_topic, command_msg, queue_timeout=15
)
# st.session_state.locked = False
print("Waiting for sensor data...")
if sensor_data:
st.success("Command sent successfully!")
plot_spectra(sensor_data)
st.write("Sensor Data Received:", sensor_data)